liquid propane
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6257
Author(s):  
Łukasz Jan Kapusta ◽  
Jakub Bachanek ◽  
Changzhao Jiang ◽  
Jakub Piaszyk ◽  
Hongming Xu ◽  
...  

This study aimed to investigate the influence of flash-boiling conditions on liquid propane sprays formed by a multi-hole injector at various injection pressures. The focus was on spray structures, which were analysed qualitatively and quantitatively by means of spray-tip penetration and global spray angle. The effect of flash boiling was evaluated in terms of trends observed for subcooled conditions. Propane was injected by a commercial gasoline direct injector into a constant volume vessel filled with nitrogen at pressures from 0.1 MPa up to 6 MPa. The temperature of the injected liquid was kept constant. The evolution of the spray penetration was observed by a high-speed camera with a Schlieren set-up. The obtained results provided information on the spray evolution in both regimes, above and below the saturation pressure of the propane. Based on the experimental results, an attempt to calibrate a simulation model has been made. The main advantage of the study is that the effects of injection pressure on the formation of propane sprays were investigated for both subcooled and flash-boiling conditions. Moreover, the impact of the changing viscosity and surface tension was limited, as the temperature of the injected liquid was kept at the same level. The results showed that despite very different spray behaviours in the subcooled and flash-boiling regimes, leading to different spray structures and a spray collapse for strong flash boiling, the influence of injection pressure on propane sprays in terms of spray-tip penetration and spray angle is very similar for both conditions, subcooled and flash boiling. As for the numerical model, there were no single model settings to simulate the flashing sprays properly. Moreover, the spray collapse was not represented very well, making the simulation set-up more suitable for less superheated sprays.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6295
Author(s):  
Kayode I. Adeniyi ◽  
Connor E. Deering ◽  
Robert A. Marriott

In order to prevent solids from forming during the transportation and handling of liquid propane, C3H8(l), the fluid is dehydrated to a level below the water dew point concentration for the coldest operating temperature. Thus, accurate calculation of the saturation water content for C3H8 is important to determine the designed allowable concentration in liquid C3H8. In this work, we measured the water content of liquid C3H8 in the presence of the structure II hydrate from p = 1.081 to 40.064 MPa and T = 241.95 to 276.11 K using a tunable diode absorption spectroscopy technique. The water content results were modelled using the reference quality reduced Helmholtz equations and the Sloan et al. model for the non-hydrate and hydrate phases, respectively. Calculations show a good agreement (an average difference of less than 12 ppm) when compared to our measurements. Furthermore, the model was also used for calculating the dissociation temperatures for three phase loci, where a relative difference greater than 5 K was observed compared to the literature, hence our previously model reported by Adeniyi et al. is recommended for three phase loci calculations.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Khan Sameem Athar ◽  
Mahmood Reza Yassin ◽  
Hassan Dehghanpour

Abstract In this study, we use a custom-designed visual cell to investigate nonequilibrium interactions between liquid propane (C3(l)) and a heavy oil sample (7.2 deg API) at varying experimental conditions. We inject C3(l) into the visual cell containing the heavy oil sample (pressure-buildup process) and allow the injected C3(l) to interact with the oil sample (soaking process). We measure visual-cell pressure and visualize the C3/heavy oil interactions during the pressure-buildup and soaking processes. Nonequilibrium interactions occurring at the interfaces of C3(l)/heavy oil and C3(l)/C3(g) are recorded with respect to time. The results show that the complete mixing of heavy oil with C3(l) occurs in two stages. First, upward extracting flows of oil components from bulk heavy oil phase toward C3(l) phase form a distinguished layer (L1) during the soaking process. The extracted oil components become denser over time and move downward (draining flows) toward the C3(l)/heavy oil interface due to gravity. The gradual color change of L1 from colorless (color of pure C3(l)) to black suggests the mixing of oil components with C3(l). After L1 appears to be uniform, a second layer (L2) is formed above L1 in the bulk C3(l) phase. Extracting and draining flows become active once again, leading to the mixing of oil components from L1 into L2. At final conditions, heavy oil and C3(l) appear to be mixed and form a single uniform phase.


2019 ◽  
Vol 98 ◽  
pp. 494-499 ◽  
Author(s):  
V.G. Baidakov ◽  
A.M. Kaverin ◽  
A.S. Pankov
Keyword(s):  

2018 ◽  
Author(s):  
Khan Sameem Athar ◽  
Mahmood Reza Yassin ◽  
Hassan Dehghanpour

Sign in / Sign up

Export Citation Format

Share Document