Fireside Deposit Formation in Biomass Fired FBC: A Comparison Between Tests Performed in Three Significantly Different Sized Combustors

Author(s):  
Bengt-Johan Skrifvars ◽  
Patrik Yrjas ◽  
Mikko Hupa ◽  
Martti Aho ◽  
Jaani Silvennoinen ◽  
...  

This paper deals with the prediction of ash related problems in fluidized bed boilers during co-firing of various bio-fuels. A study was performed where the slagging and fouling behavior was monitored in three different sized bubbling fluidized bed combustors, a 20 kW semi-pilot reactor, a 2 MW pilot-scale device and a 105 MW full-scale boiler. The aim of the study was to learn about how well slagging and fouling in a small-scale device compares to a full-scale boiler and to see how well the slagging and fouling can be predicted with a small-scale device. Various types of Scandinavian bio-fuels as well as peat were used both separately and mixed. From all three devices ash and deposit samples were collected during as uniform and stable conditions as possible. The fuels used in the three devices during the test campaigns were carefully chosen so that they would be as similar as possible. Bed, furnace and flue gas temperatures were monitored as well as flue gas emissions. The fuels, ashes and deposits were analyzed on their main components and deposition rates were calculated based on the deposit measurements. These data were finally used for assessing the slagging and fouling propensity of the fired fuel. The paper compares and discusses the results from the three different size classes.

2002 ◽  
Vol 124 (1) ◽  
pp. 40-46 ◽  
Author(s):  
E. J. Anthony ◽  
D. Y. Lu ◽  
J. Q. Zhang

Liquid fuels such as bitumen, tars, and pitches are byproducts of heavy oil upgrading processes, and are usually contaminated with high sulphur and sometimes heavy metals contents as well. Fluidized bed combustion (FBC) appears to be a promising technology for the combustion of such fuels due to its inherent fuel flexibility and low emissions characteristics. The combustion of three liquid fuels, i.e., no. 6 oil, bitumen and pitch was investigated in a pilot-scale bubbling FBC unit. An efficient liquid fuel feeding system was developed and a bubbling FBC was successfully used to combust all three liquid fuels. The proportion of fuel escaping in the form of unburnt hydrocarbons in the flue gas was less than 0.4 percent and combustion efficiencies higher than 98.5 percent were achieved. However, combustion of liquid fuels tended to occur in the freeboard and, therefore, good mixing of the fuels in the bed was critical in achieving satisfactory combustion performance.


2004 ◽  
Vol 18 (6) ◽  
pp. 1615-1624 ◽  
Author(s):  
Luís A. C. Tarelho ◽  
Manuel A. A. Matos ◽  
Fernando J. M. A. Pereira

2020 ◽  
Vol 206 ◽  
pp. 112476 ◽  
Author(s):  
D.T. Pio ◽  
L.A.C. Tarelho ◽  
A.M.A. Tavares ◽  
M.A.A. Matos ◽  
V. Silva

1994 ◽  
Vol 29 (9) ◽  
pp. 307-312 ◽  
Author(s):  
Michael Vendrup ◽  
Christina Sund

Wet scrubber systems for flue gas treatment, giving rise to a production of wastewater contaminated with heavy metals, are used at many coal-fired power stations in Europe, the USA and Japan. In order to remove the heavy metals from the wastewater, chemical precipitation with hydroxide and sulphide is applied. Results from two full-scale plants are given. Due to strict regulations for landfilling of waste contaminated with heavy metals, the amount of sludge must be minimised. Different techniques to meet this requirement are described. Biological post-treatment to reduce the nitrogen content of the wastewater will apparently be a need in the future, and pilot-scale testing is presently being carried out to determine the basic operation rules for a full-scale plant.


2013 ◽  
Vol 102 ◽  
pp. 860-867 ◽  
Author(s):  
L.F. de Diego ◽  
M. de las Obras-Loscertales ◽  
A. Rufas ◽  
F. García-Labiano ◽  
P. Gayán ◽  
...  

2014 ◽  
Vol 61 ◽  
pp. 643-647 ◽  
Author(s):  
Jan Skvaril ◽  
Anders Avelin ◽  
Jan Sandberg ◽  
Erik Dahlquist

Sign in / Sign up

Export Citation Format

Share Document