Review and Modeling of Two-Phase Frictional Pressure Gradient at Microgravity Conditions

Author(s):  
M. M. Awad ◽  
Y. S. Muzychka

First, a detailed review of two-phase frictional pressure gradient at microgravity conditions is presented. Then, a simple semi-theoretical method for calculating two-phase frictional pressure gradient at microgravity conditions using asymptotic analysis is presented. Two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the present model, the two-phase frictional pressure gradient for x ≅ 0 is nearly identical to single-phase liquid frictional pressure gradient. Also, the two-phase frictional pressure gradient for x ≅ 1 is nearly identical to single-phase gas frictional pressure gradient. The proposed model can be transformed into either a two-phase frictional multiplier for liquid flowing alone (φl2) or two-phase frictional multiplier for gas flowing alone (φg2) as a function of the Lockhart-Martinelli parameter, X. Comparison of the asymptotic model with experimental data at microgravity conditions is presented.

2009 ◽  
Vol 131 (10) ◽  
Author(s):  
M. M. Awad ◽  
S. D. Butt

A simple semitheoretical method for calculating the two-phase frictional pressure gradient in porous media using asymptotic analysis is presented. The two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the present model, the two-phase frictional pressure gradient for x≅0 is nearly identical to the single-phase liquid frictional pressure gradient. Also, the two-phase frictional pressure gradient for x≅1 is nearly identical to the single-phase gas frictional pressure gradient. The proposed model can be transformed into either a two-phase frictional multiplier for liquid flowing alone (ϕl2) or a two-phase frictional multiplier for gas flowing alone (ϕg2) as a function of the Lockhart–Martinelli parameter X. The advantage of the new model is that it has only one fitting parameter (p), while the other existing correlations, such as the correlation of Larkins et al., Sato et al., and Goto and Gaspillo, have three constants. Therefore, calibration of the new model to the experimental data is greatly simplified. The new model is able to model the existing multiparameter correlations by fitting the single parameter p. Specifically, p=1/3.25 for the correlation of Midoux et al., p=1/3.25 for the correlation of Rao et al., p=1/3.5 for the Tosun correlation, p=1/3.25 for the correlation of Larkins et al., p=1/3.75 for the correlation of Sato et al., and p=1/3.5 for the Goto and Gaspillo correlation.


Author(s):  
M. M. Awad ◽  
S. D. Butt

A simple semi-theoretical method for calculating two-phase frictional pressure gradient in porous media using asymptotic analysis is presented. Two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the present model, the two-phase frictional pressure gradient for x ≅ 0 is nearly identical to single-phase liquid frictional pressure gradient. Also, the two-phase frictional pressure gradient for x ≅ 1 is nearly identical to single-phase gas frictional pressure gradient. The proposed model can be transformed into either a two-phase frictional multiplier for liquid flowing alone (φl2) or two-phase frictional multiplier for gas flowing alone (φg2) as a function of the Lockhart-Martinelli parameter, X. The advantage of the new model is that it has only one fitting parameter (p) while the other existing correlations such as Larkins et al. correlation, Sato et al. correlation, and Goto and Gaspillo correlation have three constants. Therefore, calibration of the new model to experimental data is greatly simplified. The new model is able to model the existing multi parameters correlations by fitting the single parameter p. Specifically, p = 1/3.25 for Midoux et al. correlation, p = 1/3.25 for Rao et al. correlation, p = 1/3.5 for Tosun correlation, p = 1/3.25 for Larkins et al. correlation, p = 1/3.75 for Sato et al. correlation, and p = 1/3.5 for Goto and Gaspillo correlation.


Author(s):  
M. M. Awad ◽  
Y. S. Muzychka

A simple approach for calculating the interfacial component of frictional pressure gradient in two-phase flow in microchannels and minichannels is presented. This approach is developed using superposition of three pressure gradients: single-phase liquid, single-phase gas, and interfacial pressure gradient. The proposed model can be transformed in two different ways. First, two-phase interfacial multiplier for liquid flowing alone (φl,i2) as a function of two-phase frictional multiplier for liquid flowing alone (φl2) and the Lockhart-Martinelli parameter, X. Second, two-phase interfacial multiplier for gas flowing alone (φg,i2) as a function of two-phase frictional multiplier for gas flowing alone (φg2) and the Lockhart-Martinelli parameter, X. This proposed model allows for the interfacial pressure gradient to be easily modeled. Comparisons of the proposed model with experimental data for microchannels and minichannels and existing correlations for both φl and φg versus X are presented.


Author(s):  
M. M. Awad ◽  
Y. S. Muzychka

In the present paper, three different methods for two-phase flow modeling in microchannels and minichannels are presented. They are effective property models for homogeneous two-phase flows, an asymptotic modeling approach for separated two-phase flow, and bounds on two-phase frictional pressure gradient. In the first method, new definitions for two-phase viscosity are proposed using a one dimensional transport analogy between thermal conductivity of porous media and viscosity in two-phase flow. These new definitions can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach. In the second method, a simple semi-theoretical method for calculating two-phase frictional pressure gradient using asymptotic analysis is presented. Two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the final method, simple rules are developed for obtaining rational bounds for two-phase frictional pressure gradient in minichannels and microchannels. In all cases, the proposed modeling approaches are validated using the published experimental data.


Author(s):  
Y. S. Muzychka ◽  
M. M. Awad

The Lockhart-Martinelli method for predicting two phase flow pressure drop is examined from the point of view of asymptotic modelling. Comparisons are made with the Lockhart-Martinelli method, the Chisholm method, and the Turner-Wallis method. An alternative approach for predicting two phase flow pressure drop is developed using superposition of three pressure gradients: single phase liquid, single phase gas, and interfacial pressure drop. This new approach allows for the interfacial pressure drop to be easily modelled for each type of flow regime such as: bubbly, mist, churn, plug, stratified, and annular, or based on the classical laminar-laminer, turbulent-turbulent, laminar-turbulent and turbulent-laminar flow regimes proposed by Lockhart and Martinelli.


Author(s):  
M. M. Awad ◽  
Y. S. Muzychka

In this article, three different methods for modeling of twophase frictional pressure gradient in circular pipes are presented. They are effective property models for homogeneous two-phase flows, an asymptotic modeling approach for separated two-phase flow, and bounds on two-phase frictional pressure gradient. In the first method, new definitions for two-phase viscosity are proposed using a one-dimensional transport analogy between thermal conductivity of porous media and viscosity in two-phase flow. These new definitions can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach. In the second method, a simple semi-theoretical method for calculating two-phase frictional pressure gradient using asymptotic analysis is presented. Two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the final method, simple rules are developed for obtaining rational bounds for two-phase frictional pressure gradient in circular pipes. In all cases, the proposed modeling approaches are validated using the published experimental data.


Author(s):  
M. M. Awad ◽  
Y. S. Muzychka

A simple semi-theoretical method for calculating two-phase frictional pressure gradient in horizontal pipes using asymptotic analysis is presented. Two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. The proposed model uses an asymptotic correlation method to develop a robust compact model. The proposed model can be transformed into either a two-phase frictional multiplier for liquid flowing alone (φl2) or two-phase frictional multiplier for gas flowing alone (φg2) as a function of the Lockhart-Martinelli parameter, X. Single phase friction factors are calculated using the Churchill model which allows for prediction over the full range of laminar-transition-turbulent regions and to allow for pipe roughness effects. The proposed model is compared against published data for a number of pipe diameters. Effect of mass flux on two-phase frictional pressure gradient is also investigated. Comparison with other existing correlations for two-phase frictional pressure gradient such as the Chisholm correlation, the Friedel correlation, and the Mu¨ller-Steinhagen and Heck correlation, is also presented. Comparison with other existing correlations and experimental data for both φl and φg versus X is also presented.


Sign in / Sign up

Export Citation Format

Share Document