Turbulent Drag Reduction by Hydrogen Microbubbles Made by Electrolysis

Author(s):  
Takahisa Endo ◽  
Hiroharu Kato ◽  
Xinlin Lu

Turbulent drag reduction realized by hydrogen microbubbles was investigated experimentally. A method of generating microbubbles of 10–60μm diameter by water electrolysis was established. Experiments were performed using a water circulating tunnel. Microbubbles generated by electrolysis can achieve the same drag reduction as the injected air bubbles at a much lower void fraction. The present experimental results suggest that microbubbles produced by electrolysis are 10∼100 times more effective in terms of drag reduction than large bubbles generated by air injection. Thus, it is considered that the diameters of microbubbles play an important role in drag reduction.

Author(s):  
Xinlin Lu ◽  
Hiroharu Kato ◽  
Takafumi Kawamura

Turbulent drag reduction by very small hydrogen microbubbles was investigated experimentally. The method for generating microbubbles of 10–60 μm by water electrolysis was established firstly. Experiments were carried out using a circulating water tunnel, and it was observed that the small microbubbles generated by electrolysis can achieve the same drag reduction as the injected air bubbles at much lower void fraction. The distribution of microbubble was examined using the microscope photography. The peak of local void fraction was found to be very close to the wall, while no correlation was found between the average bubble diameter and the distance from the channel wall. The present experimental results suggest that the very small microbubbles produced by electrolysis are 10∼100 times more effective in terms of the drag reduction than large bubbles made by air injection. So it is considered that the diameters of microbubbles play an important role to drag reduction.


2008 ◽  
Vol 602 ◽  
pp. 209-218 ◽  
Author(s):  
J. J. J. GILLISSEN ◽  
B. J. BOERSMA ◽  
P. H. MORTENSEN ◽  
H. I. ANDERSSON

We use direct numerical simulation to study turbulent drag reduction by rigid polymer additives, referred to as fibres. The simulations agree with experimental data from the literature in terms of friction factor dependence on Reynolds number and fibre concentration. An expression for drag reduction is derived by adopting the concept of the elastic layer.


1988 ◽  
Vol 21 (4) ◽  
pp. 441-443
Author(s):  
HIROTSUGU HATTORI ◽  
TOMOO YAMAUCHI ◽  
SEIICHI TANABE ◽  
HIDEOMI MATSUDA

2013 ◽  
Vol 48 (4) ◽  
pp. 461-470 ◽  
Author(s):  
I. S. Vodop’yanov ◽  
N. V. Nikitin ◽  
S. I. Chernyshenko

2017 ◽  
Vol 827 ◽  
Author(s):  
Bayode E. Owolabi ◽  
David J. C. Dennis ◽  
Robert J. Poole

In this study, we experimentally investigate the turbulent drag-reduction (DR) mechanism in flow through ducts of circular, rectangular and square cross-sections using two grades of polyacrylamide in aqueous solution having different molecular weights and various semidilute concentrations. Specifically, we explore the relationship between drag reduction and fluid elasticity, purposely exploiting the mechanical degradation of polymer molecules to vary their rheological properties. We also obtain time-resolved velocity data for various DR levels using particle image velocimetry and laser Doppler velocimetry. Elasticity is quantified via relaxation times determined from uniaxial extensional flow using a capillary breakup apparatus. A plot of DR against Weissenberg number ($Wi$) is found to approximately collapse the data, with the onset of DR occurring at $Wi\approx 0.5$ and the maximum drag-reduction asymptote being approached for $Wi\gtrsim 5$. Thus quantitative predictions of DR in a range of shear flows can be made from a single measurable material property of a polymer solution, at least for this particular flexible linear polymer.


Sign in / Sign up

Export Citation Format

Share Document