Effect of Viscoelasticity on the Turbulence Kinetic Energy Budget of the Non-Newtonian Fluid Turbulent Flow Accompanied by Drag Reduction

Author(s):  
Y. Kagawa ◽  
B. Yu ◽  
Y. Kawaguchi

For the purpose of elucidating the mechanism of drag reduction by additives and finding a way to judge optimum drag-reducing additives through a simple rheological test, we performed DNS analysis of viscoelastic fluid turbulent flow in a two-dimensional channel. In this calculation, we employed the Giesekus constitutive equation to model the interaction between water-soluble polymer, or the elastic micellar network structure, and solvent. We calculated the fluid flow by varying the rheological parameters of the model. We examined the turbulent kinetic energy budget and studied the “viscoelastic contribution” term in the budget equation for turbulent intensity, which is not apparent in normal Newtonian fluid turbulence. Viscoelastic contribution has a characteristic effect on viscoelastic fluid turbulence. We concluded that the viscoelastic contribution plays a major role in turbulent frictional drag reduction. Dissipation and viscoelastic contribution serve as a key factor of turbulent kinetic energy loss in most areas of the channel. From the visualization of local and instantaneous eddy behavior, we discussed the relationship between viscoelastic contribution, elastic energy and turbulent production. We found that viscoelastic contribution serves as a direct local source of turbulent production, and that energy is stored in the elasticity.

Author(s):  
Yue Wang ◽  
Weihua Cai ◽  
Tong-zhou Wei ◽  
Feng-chen Li ◽  
Li-ming Yao ◽  
...  

In this paper, we carried out the experimental study to investigate the polymer effect on two-oscillating grid turbulence based on Particle Image Velocimetry. We chose five different concentrations (25, 50, 100, 150 and 200ppm) of polymer solution flow and the Newtonian fluid flow for comparison at three different grid oscillating frequencies (5, 7.5 and 10Hz). The results showed that comparison with the Newtonian fluid case, the turbulent kinetic energy is much smaller in polymer solution cases. A natural definition for drag reduction rate was proposed based on turbulent kinetic energy. It showed that the maximum drag reduction reaches around 80% and the drag-reducing effect increases as the concentration increases. Finally, proper orthogonal decomposition (POD) was used to extract coherent structures in grid turbulence.


2009 ◽  
Vol 66 (8) ◽  
pp. 2455-2467 ◽  
Author(s):  
Jun A. Zhang ◽  
William M. Drennan ◽  
Peter G. Black ◽  
Jeffrey R. French

Abstract As part of the Coupled Boundary Layers Air–Sea Transfer (CBLAST)-Hurricane program, flights were conducted to directly measure turbulent fluxes and turbulence properties in the high-wind boundary layer of hurricanes between the outer rainbands. For the first time, vertical profiles of normalized momentum fluxes, sensible heat and humidity fluxes, and variances of three-dimensional wind velocities and specific humidity are presented for the hurricane boundary layer with surface wind speeds ranging from 20 to 30 m s−1. The turbulent kinetic energy budget is estimated, indicating that the shear production and dissipation are the major source and sink terms, respectively. The imbalance in the turbulent kinetic energy budget indicates that the unmeasured terms, such as horizontal advection, may be important in hurricane boundary layer structure and dynamics. Finally, the thermodynamic boundary layer height, estimated based on the virtual potential temperature profiles, is roughly half of the boundary layer height estimated from the momentum flux profiles. The latter height where momentum and humidity fluxes tend to vanish is close to that of the inflow layer and also of the maximum in the tangential velocity profiles.


Sign in / Sign up

Export Citation Format

Share Document