temporal growth rate
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 1)

2019 ◽  
Vol 17 (3) ◽  
pp. 402-417
Author(s):  
S.N. Rastvortseva ◽  
◽  
I.V. Manaeva ◽  

Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 39 ◽  
Author(s):  
Roger Grimshaw

The linear stability theory of wind-wave generation is revisited with an emphasis on the generation of wave groups. The outcome is the fundamental requirement that the group move with a real-valued group velocity. This implies that both the wave frequency and the wavenumber should be complex-valued, and in turn this then leads to a growth rate in the reference frame moving with the group velocity which is in general different from the temporal growth rate. In the weakly nonlinear regime, the amplitude envelope of the wave group is governed by a forced nonlinear Schrödinger equation. The effect of the wind forcing term is to enhance modulation instability both in terms of the wave growth and in terms of the domain of instability in the modulation wavenumber space. Also, the soliton solution for the wave envelope grows in amplitude at twice the linear growth rate.


Author(s):  
Despoina Antonakaki ◽  
Sotiris Ioannidis ◽  
Paraskevi Fragopoulou

2015 ◽  
Vol 778 ◽  
pp. 120-132 ◽  
Author(s):  
Mario Weder ◽  
Michael Gloor ◽  
Leonhard Kleiser

We present a decomposition of the temporal growth rate ${\it\omega}_{i}$ which characterises the evolution of wave-like disturbances in linear stability theory for compressible flows. The decomposition is based on the disturbance energy balance by Chu (Acta Mech., vol. 1 (3), 1965, pp. 215–234) and provides terms for production, dissipation and flux of energy as components of ${\it\omega}_{i}$. The inclusion of flux terms makes our formulation applicable to unconfined flows and flows with permeable or vibrating boundaries. The decomposition sheds light on the fundamental mechanisms determining temporal growth or decay of disturbances. The additional insights gained by the proposed approach are demonstrated by an investigation of two model flows, namely compressible Couette flow and a plane compressible jet.


2014 ◽  
Vol 694 ◽  
pp. 288-291
Author(s):  
Run Ze Duan ◽  
Zhi Ying Chen ◽  
Li Jun Yang

An electrified liquid sheet injected into a dielectric moving through a viscous gas bounded by two horizontal parallel flat plates of a transverse electric field is investigated with the linear analysis method. The liquid sheet velocity profile and the gas boundary layer thickness are taken into account. The relationship between temporal growth rate and the wave number was obtained using linear stability analysis and solved using the Chebyshev spectral collocation method. The effects of the velocity profile on the stability of the electrified liquid sheet were revealed for both sinuous mode and varicose mode. The results show that the growth rate of the electrified Newtonian liquid is greater than that of corresponding Newtonian one under the same condition, and the growth rate of the sinuous mode is greater than that of the varicose mode. Keywords: instability; planar liquid sheet; velocity profile;spectral method;linear analysis


2013 ◽  
Vol 31 (2) ◽  
pp. 313-319 ◽  
Author(s):  
Alireza Paknezhad

AbstractBrillouin backward scattering is investigated in the interaction of linearly polarized short laser pulse with a homogenous underdense transversely magnetized plasma by taking into account the relativistic and nonlinearity effects up to third order. The plasma is embedded in a uniform magnetic field perpendicular to both of propagation direction and electric vector of the radiation field. Temporal growth rate of instability is calculated by using of the nonlinear wave equation. Results are significantly different in comparison with lower order computations. The growth rate of Brillouin backward instability shows a decrease due to the presence of external magnetic field, while relativistic and higher order nonlinearities due to the external magnetic field, give rise the Brillouin backward scattering instability.


2012 ◽  
Vol 706 ◽  
pp. 190-218 ◽  
Author(s):  
F. Chedevergne ◽  
G. Casalis ◽  
J. Majdalani

AbstractIn this article, a biglobal stability approach is used in conjunction with direct numerical simulation (DNS) to identify the instability mode coupling that may be responsible for triggering large thrust oscillations in segmented solid rocket motors (SRMs). These motors are idealized as long porous cylinders in which a Taylor–Culick type of motion may be engendered. In addition to the analytically available steady-state solution, a computed mean flow is obtained that is capable of securing all of the boundary conditions in this problem, most notably, the no-slip requirement at the chamber headwall. Two sets of unsteady simulations are performed, static and dynamic, in which the injection velocity at the chamber sidewall is either held fixed or permitted to vary with time. In these runs, both DNS and biglobal stability solutions converge in predicting the same modal dependence on the size of the domain. We find that increasing the chamber length gives rise to less stable eigenmodes. We also realize that introducing an eigenmode whose frequency is sufficiently spaced from the acoustic modes leads to a conventional linear evolution of disturbances that can be accurately predicted by the biglobal stability framework. While undergoing spatial amplification in the streamwise direction, these disturbances will tend to decay as time elapses so long as their temporal growth rate remains negative. By seeding the computations with the real part of a specific eigenfunction, the DNS outcome reproduces not only the imaginary part of the disturbance, but also the circular frequency and temporal growth rate associated with its eigenmode. For radial fluctuations in which the vorticoacoustic wave contribution is negligible in relation to the hydrodynamic stability part, excellent agreement between DNS and biglobal stability predictions is ubiquitously achieved. For axial fluctuations, however, the DNS velocity will match the corresponding stability eigenfunction only when properly augmented by the vorticoacoustic solution for axially travelling waves associated with the Taylor–Culick profile. This analytical approximation of the vorticoacoustic mode is found to be quite accurate, especially when modified using a viscous dissipation function that captures the decaying envelope of the inviscid acoustic wave amplitude. In contrast, pursuant to both static and dynamic test cases, we find that when the frequency of the introduced eigenmode falls close to (or crosses over) an acoustic mode, a nonlinear mechanism is triggered that leads to the emergence of a secondary eigenmode. Unlike the original eigenmode, the latter materializes naturally in the computed flow without being artificially seeded. This natural occurrence may be ascribed to a nonlinear modal interplay in the form of internal, eigenmode-to-eigenmode coupling instead of an external, eigenmode pairing with acoustic modes. As a result of these interactions, large amplitude oscillations are induced.


2006 ◽  
Vol 24 (6) ◽  
pp. 1705-1712 ◽  
Author(s):  
R. P. Singhal ◽  
A. K. Tripathi

Abstract. A dispersion relation for parallel propagating whistler mode waves has been applied to the magnetosphere of Saturn and comparisons have been made with the observations made by Voyager and Cassini. The effect of hot (suprathermal) electron-density, temperature, temperature anisotropy, and the spectral index parameter, κ, on the temporal growth rate of the whistler mode emission is studied. A good agreement is found with observations. Electron pitch angle and energy diffusion coefficients have been obtained using the calculated temporal growth rates.


Sign in / Sign up

Export Citation Format

Share Document