Spectral Analysis and Discussion on the Velocity Fluctuation in Drag Reducing Channel Flow by Surfactant Additives

Author(s):  
Yuichi Kaiho ◽  
Shumpei Hara ◽  
Takahiro Tsukahara ◽  
Yasuo Kawaguchi

It is known as the Toms effect that the wall friction coefficient is reduced by adding a small amount of polymer or surfactant into a water flow. In the drag-reducing flow, it is expected that a time scale of turbulent velocity fluctuation is changed by relaxation time due to viscoelasticity. In the present study, experimental analysis of the turbulent velocity fluctuation was performed with temporal characteristics in surfactant solution flow. The velocity fluctuations were measured by using a two-component laser Doppler velocimeter system on turbulent channel flow. And then, we performed statistical operation on those data and examined the time scale. From spectra analysis, it was found that very low frequency velocity fluctuations existed near the wall region in the surfactant solution flow. It was also revealed that the strong anisotropy occurred not only with the intensity but also with frequency distribution in turbulent velocity fluctuations. Moreover, the turbulence contributes nothing to the Reynolds shear stress and behaves as a wave motion. It was concluded that the turbulent eddies and viscoelasticity were two factors contributing to turbulent generation in the viscoelastic turbulent flow, with each factor having its own time scale.

2014 ◽  
Vol 6 ◽  
pp. 175059 ◽  
Author(s):  
Weiguo Gu ◽  
Dezhong Wang ◽  
Yasuo Kawaguchi

Both experimental and numerical studies are simultaneously performed for fully developed water and surfactant solution channel flow. The comparison aims at the surfactant solution flow in experiment with mass concentration of 25 ppm at Re = 1000 and Giesekus model with Weissenberg numbers of 10 and 40 at Reτ = 150. Big differences are found between the experimental and DNS results by comparing the distributions of velocity fluctuations, Reynolds shear stress, and so on. Although large drag reduction appears in DNS, Giesekus model has some limitations in describing the fluid characteristics and viscoelasticity of the surfactant solution.


2020 ◽  
pp. 1-18
Author(s):  
Anatoly Vitalievich Alexandrov ◽  
Ludwig Waclawovich Dorodincyn ◽  
Alexey Petrovich Duben ◽  
Dmitriy Romanovich Kolyukhin

2019 ◽  
Vol 862 ◽  
pp. 1029-1059 ◽  
Author(s):  
Qiang Yang ◽  
Ashley P. Willis ◽  
Yongyun Hwang

A new set of exact coherent states in the form of a travelling wave is reported in plane channel flow. They are continued over a range in $Re$ from approximately $2600$ up to $30\,000$, an order of magnitude higher than those discovered in the transitional regime. This particular type of exact coherent states is found to be gradually more localised in the near-wall region on increasing the Reynolds number. As larger spanwise sizes $L_{z}^{+}$ are considered, these exact coherent states appear via a saddle-node bifurcation with a spanwise size of $L_{z}^{+}\simeq 50$ and their phase speed is found to be $c^{+}\simeq 11$ at all the Reynolds numbers considered. Computation of the eigenspectra shows that the time scale of the exact coherent states is given by $h/U_{cl}$ in channel flow at all Reynolds numbers, and it becomes equivalent to the viscous inner time scale for the exact coherent states in the limit of $Re\rightarrow \infty$. The exact coherent states at several different spanwise sizes are further continued to a higher Reynolds number, $Re=55\,000$, using the eddy-viscosity approach (Hwang & Cossu, Phys. Rev. Lett., vol. 105, 2010, 044505). It is found that the continued exact coherent states at different sizes are self-similar at the given Reynolds number. These observations suggest that, on increasing Reynolds number, new sets of self-sustaining coherent structures are born in the near-wall region. Near this onset, these structures scale in inner units, forming the near-wall self-sustaining structures. With further increase of Reynolds number, the structures that emerged at lower Reynolds numbers subsequently evolve into the self-sustaining structures in the logarithmic region at different length scales, forming a hierarchy of self-similar coherent structures as hypothesised by Townsend (i.e. attached eddy hypothesis). Finally, the energetics of turbulent flow is discussed for a consistent extension of these dynamical systems notions to high Reynolds numbers.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 846
Author(s):  
Zaiguo Fu ◽  
Xiaotian Liang ◽  
Kang Zhang

Although the turbulent intensity is suppressed in the drag-reducing channel flow by viscoelastic additives, the mean velocity distribution in the channel flow is symmetrical and tends to be similar to the laminar flow. In the study of near-wall modulation of the drag-reducing flow with an injected ultrathin water layer, an asymmetrical mean velocity distribution was found. To further investigate this phenomenon and the underlying cause, an experiment was carried out with the water injected from a porous channel wall at a small velocity (~10−4 m/s) into the drag-reducing flow of surfactant solution. The instantaneous concentration and flow fields were measured by using planar laser-induced fluorescence (PLIF) and particle imaging velocimetry (PIV) techniques, respectively. Moreover, analyses on turbulent statistical characteristics and spatial distribution of viscoelastic structures were carried out on the basis of comparison among various flow cases. The results showed that the injected ultrathin water layer under present experimental conditions affected the anisotropy of the drag-reducing flow. The characteristics, such as turbulence intensity, showed the zonal feature in the wall-normal direction. The Reynolds shear stress was enhanced in the near-wall region, and the viscoelastic structure was modified severely due to the redistributed stress. These results may provide experimental supports for the near-wall modulation of turbulence and the exploration of the drag-reducing mechanism by viscoelastic additives.


1973 ◽  
Vol 60 (2) ◽  
pp. 321-362 ◽  
Author(s):  
William K. George ◽  
John L. Lumley

In 1964, Yeh & Cummins demonstrated that coherent light sources could be used for the measurement of steady fluid velocities by observing the Doppler shift in the frequency of light scattered from small particles moving with the fluid. Since 1964 many investigators have attempted to extend this technique to the measurement of turbulent velocity fluctuations.A fundamental limitation on this type of velocimeter is the Doppler ambiguity introduced by the finite transit time of particles through the scattering volume, turbulent velocity fluctuations across the scattering volume, mean velocity gradients and electronic noise. A unified account of the effect of the Doppler ambiguity on the measurement of the instantaneous velocities is presented and results are interpreted using the power spectrum. The influence of the ambiguity on the measurement of other statistical quantities is also examined.Limitations on the spatial and temporal resolution imposed by the finite sampling volume are examined using the power spectrum and criteria for optimization of the response are proposed.An operational laser-Doppler velocimeter is described and measurements of spectra in both laminar and turbulent flow are presented. The experimental results are seen to be in excellent agreement with theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document