scholarly journals Study on the Drag Reducing Channel Fluids by Experiments and DNS Using Giesekus Model

2014 ◽  
Vol 6 ◽  
pp. 175059 ◽  
Author(s):  
Weiguo Gu ◽  
Dezhong Wang ◽  
Yasuo Kawaguchi

Both experimental and numerical studies are simultaneously performed for fully developed water and surfactant solution channel flow. The comparison aims at the surfactant solution flow in experiment with mass concentration of 25 ppm at Re = 1000 and Giesekus model with Weissenberg numbers of 10 and 40 at Reτ = 150. Big differences are found between the experimental and DNS results by comparing the distributions of velocity fluctuations, Reynolds shear stress, and so on. Although large drag reduction appears in DNS, Giesekus model has some limitations in describing the fluid characteristics and viscoelasticity of the surfactant solution.

Author(s):  
Yuichi Kaiho ◽  
Shumpei Hara ◽  
Takahiro Tsukahara ◽  
Yasuo Kawaguchi

It is known as the Toms effect that the wall friction coefficient is reduced by adding a small amount of polymer or surfactant into a water flow. In the drag-reducing flow, it is expected that a time scale of turbulent velocity fluctuation is changed by relaxation time due to viscoelasticity. In the present study, experimental analysis of the turbulent velocity fluctuation was performed with temporal characteristics in surfactant solution flow. The velocity fluctuations were measured by using a two-component laser Doppler velocimeter system on turbulent channel flow. And then, we performed statistical operation on those data and examined the time scale. From spectra analysis, it was found that very low frequency velocity fluctuations existed near the wall region in the surfactant solution flow. It was also revealed that the strong anisotropy occurred not only with the intensity but also with frequency distribution in turbulent velocity fluctuations. Moreover, the turbulence contributes nothing to the Reynolds shear stress and behaves as a wave motion. It was concluded that the turbulent eddies and viscoelasticity were two factors contributing to turbulent generation in the viscoelastic turbulent flow, with each factor having its own time scale.


2013 ◽  
Vol 871 ◽  
pp. 89-94 ◽  
Author(s):  
Wei Guo Gu ◽  
De Zhong Wang

In this paper, both experimental and numerical studies were carried out for fully developed water and CTAC solution channel flows in order to understand the different distribution of Reynolds shear stress appeared in experiments and DNS. Quadrant analysis were carried out according to the categorization of turbulent fluid motions. The studies indicates that the elastic force of the additives' structures will cause the fluids moving back and forth in the wall-normal direction in experiment and the symmetric distribution of Reynolds shear stress in all quadrants. However, Giesekus model in DNS only applies the elastic force inhibiting the transverse fluctuations.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Weiguo Gu ◽  
Yasuo Kawaguchi ◽  
Dezhong Wang ◽  
Saito Akihiro

Drag-reducing flow of dilute surfactant solution in the two-dimensional channel is investigated experimentally by using particle image velocimetry (PIV) system. Five hundred instantaneous velocity frames of u-v in the x-y plane are taken by PIV for every condition. Fluctuation intensity and instantaneous velocity distributions are discussed in order to study the turbulence transport in the drag-reducing flow. As compared with water, the results show that wall-normal velocity fluctuations in the drag-reducing flow are suppressed significantly, and instantaneous velocity distributions display different features. Moreover, the drag-reducing flow exhibits the reduced inclination angle of turbulence transport and appearance of “zero Reynolds shear stress.” High shear dissipation also appears in some solutions. Based on the analysis of the balance of mean and mean turbulent kinetic energies, it is found that the complex rheology, i.e., the elasticity and viscosity of the solution, is considered as the main factor that change the characteristics of turbulence transport.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yu Han ◽  
Shu-Qing Yang ◽  
Muttucumaru Sivakumar ◽  
Liu-Chao Qiu ◽  
Jian Chen

Hydraulic engineers often divide a flow region into subregions to simplify calculations. However, the implementation of flow divisibility remains an open issue and has not yet been implemented as a fully developed mathematical tool for modeling complex channel flows independently of experimental verification. This paper addresses whether a three-dimensional flow is physically divisible, meaning that division lines with zero Reynolds shear stress exist. An intensive laboratory investigation was conducted to carefully measure the time-averaged velocity in a rectangular open channel flow using a laser Doppler anemometry system. Two innovative methods are employed to determine the locations of division lines based on the measured velocity profile. The results clearly reveal that lines with zero total shear stress are discernible, indicating that the flow is physically divisible. Moreover, the experimental data were employed to test previously proposed methods of calculating division lines, and the results show that Yang and Lim’s method is the most reasonable predictor.


Author(s):  
Takamichi Hiroi ◽  
Tatsuya Hamada ◽  
Masahiko Makino ◽  
Chiharu Kawakita

The turbulent structure of flow field with microbubbles which is generated by electrolysis in a horizontal water channel is investigated at Reynolds number Rem = 24000 (based on the channel height). Firstly, Shadow Image Technique (SIT) is applied to investigate the relation between the shape and the velocity of microbubbles. The experiments have been carried out at the current value 100mA, 200mA, 300mA. The amount of gas generated by electrolysis per unit time is estimated 1.89–5.67 mm3/s. The void fraction is 0.95 × 10−5 – 2.93 × 10−4 %. The mode of the equivalent diameter is 5–10 μm regardless of the condition of the current value. In contrast the mean of the equivalent diameter increases with the increasing of the current value. The mean streamwise velocity of microbubbles increases with the current value. Secondly, Particle Image Velocimetry (PIV) is applied to investigate the turbulent structure in a microbubble channel flow. The experiments have been carried out at the current value 250mA, 300mA. The streamwise mean velocity decreases with the increasing of the current value. The velocity normal from the wall increases by microbubbles. The turbulent intensity with microbubble is bigger than that without microbubble. The Reynolds shear stress with microbubble, however, is smaller than that without microbubble. The decreasing of contribution to the friction coefficient of the turbulent component is calculated about 6.4 % using FIK identify at a low void fraction 2.93 × 10−4 %. The increasing of the frequency of inner interaction and outer interaction causes the decreasing of Reynolds shear stress is clarified by quadrant analysis.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 846
Author(s):  
Zaiguo Fu ◽  
Xiaotian Liang ◽  
Kang Zhang

Although the turbulent intensity is suppressed in the drag-reducing channel flow by viscoelastic additives, the mean velocity distribution in the channel flow is symmetrical and tends to be similar to the laminar flow. In the study of near-wall modulation of the drag-reducing flow with an injected ultrathin water layer, an asymmetrical mean velocity distribution was found. To further investigate this phenomenon and the underlying cause, an experiment was carried out with the water injected from a porous channel wall at a small velocity (~10−4 m/s) into the drag-reducing flow of surfactant solution. The instantaneous concentration and flow fields were measured by using planar laser-induced fluorescence (PLIF) and particle imaging velocimetry (PIV) techniques, respectively. Moreover, analyses on turbulent statistical characteristics and spatial distribution of viscoelastic structures were carried out on the basis of comparison among various flow cases. The results showed that the injected ultrathin water layer under present experimental conditions affected the anisotropy of the drag-reducing flow. The characteristics, such as turbulence intensity, showed the zonal feature in the wall-normal direction. The Reynolds shear stress was enhanced in the near-wall region, and the viscoelastic structure was modified severely due to the redistributed stress. These results may provide experimental supports for the near-wall modulation of turbulence and the exploration of the drag-reducing mechanism by viscoelastic additives.


2008 ◽  
Vol 130 (9) ◽  
Author(s):  
Abu Seena ◽  
A. Bushra ◽  
Noor Afzal

The heat and fluid flow in a fully developed turbulent channel flow have been investigated. The closure model of Reynolds shear stress and Reynolds heat flux as a function of a series of logarithmic functions in the mesolayer variable have been adopted. The interaction between inner and outer layers in the mesolayer (intermediate layer) arising from the balance of viscous effect, pressure gradient and Reynolds shear stress (containing the maxima of Reynolds shear stress) was first proposed by Afzal (1982, “Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer,” Arch. Appl. Mech., 53, 355–377). The unknown constants in the closure models for Reynolds shear stress and Reynolds heat flux have been estimated from the prescribed boundary conditions near the axis and surface of channel. The predictions are compared with the DNS data Iwamoto et al. and Abe et al. for Reynolds shear stress and velocity profile and Abe et al. data of Reynolds heat flux and temperature profile. The limitations of the closure models are presented.


2010 ◽  
Vol 653 ◽  
pp. 57-97 ◽  
Author(s):  
SUBHASISH DEY ◽  
TUSHAR K. NATH ◽  
SUJIT K. BOSE

This paper presents an experimental study on turbulent flow characteristics in submerged plane wall jets subjected to injection (upward seepage) and suction (downward seepage) from the wall. The vertical distributions of time-averaged velocity components, turbulence intensity components and Reynolds shear stress at different horizontal distances are presented. The horizontal distributions of wall shear stress determined from the Reynolds shear stress profiles are also furnished. The flow field exhibits a decay of the jet velocity over a horizontal distance. The wall shear stress and the rate of decay of the jet velocity increase in the presence of injection and decrease with suction. Based on the two-dimensional Reynolds-averaged Navier–Stokes equations of a steady turbulent flow, the velocity and Reynolds shear stress distributions in the fully developed zone subjected to no seepage, injection and suction are theoretically computed. The response of the turbulent flow characteristics to injection and suction is analysed from the point of view of similarity characteristics, growth of the length scale and decay of the velocity and turbulence characteristics scales. The significant observation is that the velocity, Reynolds shear stress and turbulence intensities in the fully developed zone are reasonably similar under both injection and suction on applying the appropriate scaling laws. An analysis of the third-order moments of velocity fluctuations reveals that the inner layer of the jet is associated with the arrival of low-speed fluid streaks causing an effect of retardation. On the other hand, the upper layer of the jet is associated with the arrival of high-speed fluid streaks causing an effect of acceleration. Injection influences the near-wall distributions of the third-order moments by increasing the upward turbulent advection of the streamwise Reynolds normal stress. In contrast, suction influences the near-wall distributions of the third-order moments by increasing the downward turbulent advection of the streamwise Reynolds normal stress. Also, injection and suction change the vertical turbulent flux of the vertical Reynolds normal stress in a similar way. The streamwise turbulent energy flux travels towards the jet origin within the jet layer, while it travels away from the origin within the inner layer of the circulatory flow. The turbulent energy budget suggests that the turbulent and pressure energy diffusions oppose each other, and the turbulent dissipation lags the turbulent production. The quadrant analysis of velocity fluctuations reveals that the inward and outward interactions are the primary contributions to the Reynolds shear stress production in the inner and outer layers of the jet, respectively. However, injection induces feeble ejections in the vicinity of the wall.


Author(s):  
Francesco Soranna ◽  
Yi-Chih Chow ◽  
Oguz Uzol ◽  
Joseph Katz

Stereoscopic PIV measurements examine the flow structure and turbulence within a rotor near wake located within a non-uniform field generated by a row of Inlet Guide Vanes (IGVs). The experiments are performed in a refractive index matched facility that provides unobstructed view of the entire flow field. The data are acquired at 10 closely spaced radial planes located near mid-span, enabling measurements of all the components of the phase averaged velocity and strain rate, as well as the Reynolds stress and the triple correlation tensors. The rotor wake is sheared and bent towards the pressure (inner) side by a non-uniform flow field generated by IGV wake segments that propagate along the suction and pressure sides of the rotor passage with different speeds. The axial velocity fluctuations increase along the suction/outer side of the wake, while the other components decay. On the pressure/inner part of the bent wake the circumferential velocity fluctuations are higher. The Reynolds shear stress has a complex distribution, but is higher on the suction side. The turbulent kinetic energy is also consistently higher on the outer (suction) side of the wake. This trend is fundamentally different from those observed in prior studies of curved wakes where turbulence is enhanced on the inner side of the wake due to the destabilizing effect of curvature. To explain the difference, we examine the contributors to turbulent kinetic energy production rate in a curvilinear coordinate system aligned with the wake-centerline. The contribution of streamwise curvature to the production rate of turbulent kinetic energy, although consistent with expected trends, is overwhelmed by effects of wake shearing. The primary contributor to turbulent kinetic energy production rate is the product of Reynolds shear stress with cross-stream gradients of streamwise (in a frame of reference relative to the rotor blade) velocity in the wake. The location of peak in turbulent kinetic energy is almost aligned with that of production rate. The turbulence diffusion term opposes the production rate peaks, but also has high values along the edge of the wake.


Optics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 40-51
Author(s):  
Esther Mäteling ◽  
Michael Klaas ◽  
Wolfgang Schröder

An extended experimental method is presented in which the micro-pillar shear-stress sensor (MPS 3 ) and high-speed stereo particle-image velocimetry measurements are simultaneously performed in turbulent channel flow to conduct concurrent time-resolved measurements of the two-dimensional wall-shear stress (WSS) distribution and the velocity field in the outer flow. The extended experimental setup, which involves a modified MPS 3 measurement setup and data evaluation compared to the standard method, is presented and used to investigate the footprint of the outer, large-scale motions (LSM) onto the near-wall small-scale motions. The measurements were performed in a fully developed, turbulent channel flow at a friction Reynolds number R e τ = 969 . A separation between large and small scales of the velocity fluctuations and the WSS fluctuations was performed by two-dimensional empirical mode decomposition. A subsequent cross-correlation analysis between the large-scale velocity fluctuations and the large-scale WSS fluctuations shows that the streamwise inclination angle between the LSM in the outer layer and the large-scale footprint imposed onto the near-wall dynamics has a mean value of Θ ¯ x = 16.53 ∘ , which is consistent with the literature relying on direct numerical simulations and hot-wire anemometry data. When also considering the spatial shift in the spanwise direction, the mean inclination angle reduces to Θ ¯ x z = 13.92 ∘ .


Sign in / Sign up

Export Citation Format

Share Document