Effects of Pipe Diameter and Stokes Number on Erosion in Elbows

Author(s):  
Soroor Karimi ◽  
Alireza Asgharpour ◽  
Elham Fallah ◽  
Siamack A. Shirazi

Abstract Large diameter pipes and elbows are vastly used in industry especially in mining and oil and gas production. Solid particle erosion is a common issue in these pipelines, and it is important to predict it to avoid failures. Currently, laboratory experiments reported in the literature are limited to diameters less than 4 inches. Therefore, there is not much experimental data available for large diameter elbows. However, the erosion can be predicted by CFD simulations and applying erosion equations in such elbows. The goal of this project is to examine the effects of elbow diameter and Stokes number on erosion patterns and magnitude for various flow conditions for elbow diameters of 2, 4, 8, and 12 inches. The approach of this work is to first perform CFD simulations of liquid-solid and gas-solid flows in 2-inch and 4-inch elbows, respectively, and evaluate the results by available experimental data. Then CFD simulations are carried for 2, 4, 8, and 12-inch standard elbows for various Stokes numbers corresponding to gas dominant flows with the velocity of 30 m/s, and liquid dominant flows with the velocities of 6 m/s. For gas dominant flows erosion in air and for liquid dominant flows erosion in water is investigated. All these simulations are carried for four particle sizes of 25, 75, 150, and 300 microns. The results indicate that Stokes number and diameter of elbows have significant effects on erosion patterns as well as magnitudes in this geometry. This work will have various applications, including validating mechanistic models of erosion predictions in elbows and developing an Artificial Intelligence (machine learning) algorithm to predict erosion for various flow conditions. Such algorithms are limited to the range of conditions they are trained for. Therefore, it is important to expand the database these codes are accessing. Overall, the CFD database of large diameter elbows will reduce the computational costs in the future.

Author(s):  
Mark McDougall ◽  
Ken Williamson

Oil and gas production in Canada’s west has led to the need for a significant increase in pipeline capacity to reach export markets. Current proposals from major oil and gas transportation companies include numerous large diameter pipelines across the Rocky Mountains to port locations on the coast of British Columbia (BC), Canada. The large scale of these projects and the rugged terrain they cross lead to numerous challenges not typically faced with conventional cross-country pipelines across the plains. The logistics and access challenges faced by these mountain pipeline projects require significant pre-planning and assessment, to determine the timing, cost, regulatory and environmental impacts. The logistics of pipeline construction projects mainly encompasses the transportation of pipe and pipeline materials, construction equipment and supplies, and personnel from point of manufacture or point of supply to the right-of-way (ROW) or construction area. These logistics movement revolve around the available types of access routes and seasonal constraints. Pipeline contractors and logistics companies have vast experience in moving this type of large equipment, however regulatory constraints and environmental restrictions in some locations will lead to significant pre-planning, permitting and additional time and cost for material movement. In addition, seasonal constraints limit available transportation windows. The types of access vary greatly in mountain pipeline projects. In BC, the majority of off-highway roads and bridges were originally constructed for the forestry industry, which transports logs downhill whereas the pipeline industry transports large equipment and pipeline materials in both directions and specifically hauls pipe uphill. The capacity, current state and location of these off-highway roads must be assessed very early in the process to determine viability and/or potential options for construction access. Regulatory requirements, environmental restrictions, season of use restrictions and road design must all be considered when examining the use of or upgrade of existing access roads and bridges. These same restrictions are even more critical to the construction of new access roads and bridges. The logistics and access challenges facing the construction of large diameter mountain pipelines in Western Canada can be managed with proper and timely planning. The cost of the logistics and access required for construction of these proposed pipeline projects will typically be greater than for traditional pipelines, but the key constraint is the considerable time requirement to construct the required new access and pre-position the appropriate material to meet the construction schedule. The entire project team, including design engineers, construction and logistics planners, and material suppliers must be involved in the planning stages to ensure a cohesive strategy and schedule. This paper will present the typical challenges faced in access and logistics for large diameter mountain pipelines, and a process for developing a comprehensive plan for their execution.


1994 ◽  
Author(s):  
Richard F. Mast ◽  
D.H. Root ◽  
L.P. Williams ◽  
W.R. Beeman

Alloy Digest ◽  
1995 ◽  
Vol 44 (1) ◽  

Abstract SANDVIK SANICRO 41 is a nickel-base corrosion resistant alloy with a composition balanced to resist both oxidizing and reducing environments. A high-strength version (110) is available for oil and gas production. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-475. Producer or source: Sandvik.


Sign in / Sign up

Export Citation Format

Share Document