Movement of Cell Flowing Over Oblique Micro Grooves in Flow Channel

2021 ◽  
Author(s):  
Shigehiro Hashimoto ◽  
Hiroki Yonezawa

Abstract A micro flow-channel with bottom-microgrooves has been manufactured by photolithography technique for cell sorting. The movement of each cell passing over microgrooves has been analyzed in relation to cell deformation and alignment in vitro. The flow path (height 0.05 mm × width 1 mm × length 25 mm) between the two transparent PDMS disks has rectangular microgrooves (4.5 μm deep, 0.2 mm long) on the bottom. Variations are made in groove widths (0.03 mm, 0.04 mm, and 0.05 mm). The angle between the flow direction and the longitudinal axis of the groove is 45 degrees. Myoblasts (C2C12: mouse myoblast line) were used in the flow test. The main flow velocity of the medium (0.02 mm/s < vx < 0.23 mm/s) was controlled by the pressure difference between the inlet and the outlet. The shape of each flowing cell was tracked in a movie recorded by a camera attached to the eyepiece of the microscope. Experimental results show that the movement perpendicular to the main flow direction in the micro-groove can distinguish cells in relation to smaller deformations and larger alignment changes.

Author(s):  
Shigehiro Hashimoto ◽  
Taketo Matsumoto ◽  
Shogo Uehara

The change in direction of a cell flowing over an oblique micro groove has been analyzed in vitro. The micro flow-channel (0.05 mm height x 1 mm width x 25 mm length) with oblique micro grooves (4.5 μm depth) was manufactured on a polydimethylsiloxane (PDMS) disk by the micromachining technique. The angle between the main flow direction and the longitudinal axis of the groove is 45 degrees. The effect of variation of the groove width (0.03 mm, 0.04 mm, and 0.05 mm) was studied. Myoblasts (C2C12: mouse myoblast cell line) were used in the test. The main flow velocity (0.02 mm/s < vx < 0.23 mm/s) of the medium was controlled by the pressure difference between the inlet and the outlet. The shape of each flowing cell was tracked on a movie recorded by the camera attached to the eyepiece of the microscope. The experimental results show that the change of the direction of each cell by each groove depends on the shape of the cell, which depends on both the shape of the cell and the width of the groove.


Author(s):  
Shigehiro Hashimoto

Abstract The movement of a flowing cell near the oblique micro groove on the bottom surface in the micro flow channel has been measured to sort biological cells in vitro. The micro groove of the rectangular shape (4.5 μm depth, and 0.2 mm length) was fabricated on the polydimethylsiloxane (PDMS) disk by the photolithography technique. The angle between the flow direction and the longitudinal axis of the groove is 45 degree. Variation has been made on the width (0.03 mm &lt; w &lt; 0.05 mm) of the groove. A rectangular flow channel (0.05 mm height × 1 mm width × 25 mm length) has been constructed between two transparent PDMS disks. C2C12 (mouse myoblast cell line) was used in the test. A flow velocity (0.1 mm/s &lt; vx &lt; 2.4 mm/s) of the suspension of cells was controlled by the pressure difference between the inlet and the outlet. The shifted distance of each cell along the oblique groove depends on the diameter of the cell. The malnourished cell with the different density can be distinguished by the shifted distance according to the velocity of the cell.


Author(s):  
Kevin Tracy ◽  
Stephen P. Lynch

Abstract Shaped film cooling holes are used extensively for film cooling in gas turbines due to their superior performance in keeping coolant attached to the surface, relative to cylindrical holes. However, fewer studies have examined the impact of the orientation of the shaped hole axis relative to the main flow direction, known as a compound angle. A compound angle can occur intentionally due to manufacturing, or unintentionally due to changes in the main flow direction at off-design conditions. In either case, the compound angle causes the film cooling jet to roll up into a strong streamwise vortex that changes the lateral distribution of coolant, relative to the pair of vortices that develop from an axially oriented film cooling hole. In this study, Large Eddy Simulation (LES) using the Wall-Adapting Local Eddy Viscosity (WALE) model was performed on the publicly available 7-7-7 shaped film cooling hole, at two orientations (0°, 30°) and two blowing ratios (M = 1, 3). Laterally-averaged film effectiveness was largely unchanged by a compound angle at a blowing ratio of 1, but improved at a blowing ratio of 3. For both blowing ratios, the lateral distribution of film was more uniform with the addition of a 30° compound angle. Both wall normal and lateral turbulent convective heat transfer was increased by the addition of a compound angle at both blowing ratios.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Helmut Sauer ◽  
Robin Schmidt ◽  
Konrad Vogeler

In this paper, results concerning the influence of chord length and inlet boundary layer thickness on the endwall loss of a linear turbine cascade are discussed. The investigations were performed in a low speed cascade tunnel using the turbine profile T40. The turning of 90 deg and 70 deg, the velocity ratio in the cascade from 1.0 to 3.5 as well as the chord length of 100 mm, 200 mm, and 300 mm were specified. In a measurement distance of one chord behind the cascade in main flow direction, an approximate proportionality of endwall loss and chord was observed in a wide range of velocity ratios. At small measurement distances (e.g., s2/l=0.4), this proportionality does not exist. If a part of the flow path within the cascade is approximately incorporated, a proportionality to the chord at small measurement distances can be obtained, too. Then, the magnitude of the endwall loss mainly depends on the distance in main flow direction. At velocity ratios near 1.0, the influence of the chord decreases rapidly, while at a velocity ratio of 1.0, the endwall loss is independent of the chord. By varying the inlet boundary layer thickness, no correlation of displacement thickness and endwall loss was achieved. A calculation method according to the modified integral equation by van Driest delivers the wall shear stress. Its influence on the endwall loss was analyzed.


2019 ◽  
Vol 865 ◽  
Author(s):  
Kevin Kevin ◽  
Jason Monty ◽  
Nicholas Hutchins

This paper quantifies the instantaneous form of large-scale turbulent structures in canonical smooth-wall boundary layers, demonstrating that they adhere to a form that is consistent with the self-sustaining streak instability model suggested by Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704) and Hwang & Cossu (Phys. Fluids, vol. 23, 2011, 061702). Our motivation for this study stems from previous observations of large-scale streaks that have been spatially locked in position within spanwise-heterogeneous boundary layers. Here, using similar tools, we demonstrate that the randomly occurring large-scale structures in canonical layers show similar behaviour. Statistically, we show that the signature of large-scale coherent structures exhibits increasing meandering behaviour with distance from the wall. At the upper edge of the boundary layer, where these structures are severely misaligned from the main-flow direction, the induced velocities associated with the strongly yawed vortex packets/clusters yield a significant spanwise-velocity component leading to an apparent oblique coherence of spanwise-velocity fluctuations. This pronounced meandering behaviour also gives rise to a dominant streamwise periodicity at a wavelength of approximately $6\unicode[STIX]{x1D6FF}$. We further statistically show that the quasi-streamwise roll-modes formed adjacent to these very large wavy motions are often one-sided (spanwise asymmetric), in stark contrast to the counter-rotating form suggested by conventional conditionally averaged representations. To summarise, we sketch a representative picture of the typical large-scale structures based on the evidence gathered in this study.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 553 ◽  
Author(s):  
Muhammad Afzal Rana ◽  
Yasar Ali ◽  
Babar Ahmad ◽  
Muhammad Touseef Afzal Rana

This work explores the three-dimensional laminar flow of an incompressible second-grade fluid between two parallel infinite plates. The assumed suction velocity comprises a basic steady dispersal with a superimposed weak transversally fluctuating distribution. Because of variation of suction velocity in transverse direction on the wall, the problem turns out to be three-dimensional. Analytic solutions for velocity field, pressure and skin friction are presented and effects of dimensionless parameters emerging in the model are discussed. It is observed that the non-Newtonian parameter plays dynamic part to rheostat the velocity component along main flow direction.


Author(s):  
Jose M. Luna ◽  
Ricardo Romero-Mendez ◽  
Abel Hernandez-Guerrero ◽  
Jose C. Rubio-Arana

The flow structures in the cavities of parallel cross-corrugated surfaces, also called chevron geometry, are investigated in this work using an experimental visualization method. An angle of 45° between the corrugations and the main flow direction has been considered. Reviews show that a considerable amount of investigations, mainly experimental, of heat transfer and pressure drop for cross-corrugated plates has been performed, whereas for the flow field in the cavities has only been investigated numerically. The flow visualization experiments are performed inside a water tunnel using a wide range of the hydraulic diameter-based Reynolds number.


2005 ◽  
Vol 127 (5) ◽  
pp. 888-896 ◽  
Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

Detached Eddy Simulation (DES) of a hydrodynamic and thermally developed turbulent flow is presented for a stationary duct with square ribs aligned normal to the main flow direction. The rib height to channel hydraulic diameter (e∕Dh) is 0.1, the rib pitch to rib height (P∕e) is 10 and the calculations have been carried out for a bulk Reynolds number of 20,000. DES calculations are carried out on a 963 grid, a 643 grid, and a 483 grid to study the effect of grid resolution. Based on the agreement with earlier LES computations, the 643 grid is observed to be suitable for the DES computation. DES and RANS calculations carried out on the 643 grid are compared to LES calculations on 963∕1283 grids and experimental measurements. The flow and heat transfer characteristics for the DES cases compare well with the LES results and the experiments. The average friction and the augmentation ratios are consistent with experimental results, predicting values within 10% of the measured quantities, at a cost lower than the LES calculations. RANS fails to capture some key features of the flow.


Sign in / Sign up

Export Citation Format

Share Document