Analysis of a 3 kW PEM Fuel Cell Stack Developed by ITRI

Author(s):  
M. H. Tsai ◽  
Y. Y. Yan ◽  
H. S. Chu ◽  
R. J. Shyu ◽  
F. Tsau

A 3kW PEMFC power generation system is developed by Energy and Resources Laboratories in 2002. This system integrates hydrogen storage, fuel reformer, power conversion, hot water tank as well as a 3kW PEMFC stack. The power generation efficiency at 30% and total energy efficiency with hot water recovery at 67% are designed. The stack is key component of this system, and its performance is tested and analyzed before it is integrated into the system. This paper presents its performance in I-V polarization curves with controlling parameters such as fuel cell operating temperature, air humidity, hydrogen humidity and stoichimetric ratio of air. Detailed discussions are given for the effect of each parameter on stack’s performance.

Author(s):  
Y. Y. Yan ◽  
G. S. Chen ◽  
S. C. Chiang ◽  
H. S. Chu ◽  
F. S. Tsu ◽  
...  

A 1 kW proton exchange membrane (PEM) fuel cell power system with heat and water recovery was successfully integrated. This power generation system is designed for the stationary application. The waste heat can be recovered into hot water, which store in a tank with temperature higher than 60°C. This hot water may be suitable for bath and kitchen use in a small family. The adjustment for the power generation system is now on going and promoting. Now 38% in the electrical efficiency (AC110V output) for the system is achieved. With waste heat recovery involved, the system will potentially have overall energy efficiency more than 70%. In order to optimize the system, some technologies should be studied and pre-tested before integration work, which mainly included water management for the fuel cell stack, water and thermal conditions on the performance of fuel cell, air and water pumping power needed for the fitting of optimum system performance.


2016 ◽  
Vol 42 (2) ◽  
pp. 76-82
Author(s):  
Akira Saito ◽  
Yuta Sasaki ◽  
Kazuhide Kimbara ◽  
Masao Sudou

Author(s):  
Jing-yu Ran ◽  
Chang-lei Qin

CO2 is a main greenhouse gas fazing the Earth. So countries around the world are actively studying the methods of capturing CO2 to reduce emission. In this paper, firstly a brief review was carried out on the research development and technical problems of three typical near-zero CO2 emission power generation systems. Focus was made on the construction of one possible commercially applied zero emission system, which has new principle but relatively conservative sections. Preliminary analysis and calculation of energy and mass flow have been finished to evaluate its performance. The results showed that apart from zero CO2 emission, a relatively tempting efficiency could be sustained. Theoretically, higher than 90% purity of CO2 and 63% generation efficiency of the whole system can be achieved.


Sign in / Sign up

Export Citation Format

Share Document