Production of Hydrogen With Low Carbon Monoxide Formation Via Catalytic Steam Reforming of Methanol

Author(s):  
Sanjay Patel ◽  
K. K. Pant

The production of hydrogen was investigated in a fixed bed tubular reactor via steam reforming of methanol using CuO/ZnO/Al2O3 catalysts prepared by wet impregnation method and characterized by measuring surface area, pore volume, X-ray diffraction pattern and scanning electron microscopy photographs. The SRM was carried out at atmospheric pressure, temperature 493–573 K, steam to methanol molar ratio 1–1.8 and W/F 3 to 15. Effects of reaction temperature, contact-time, steam to methanol molar ratio and zinc content of catalyst on methanol conversion, selectivity and product yields were evaluated. The addition of zinc enhances the methanol conversion and hydrogen production. The excess steam promotes the methanol conversion and suppresses the carbon monoxide formation. Different strategies have been mentioned to minimize the carbon monoxide formation for the steam reforming of methanol to produce fuel cell grade hydrogen. Optimum operating conditions with appropriate composition of catalyst has been found to produce more selective hydrogen with minimum carbon monoxide. The reaction mechanism has been proposed based on the product distribution. The kinetic model available in literature fitted well with the experimental results.

2006 ◽  
Vol 3 (4) ◽  
pp. 369-374 ◽  
Author(s):  
Sanjay Patel ◽  
K. K. Pant

The production of hydrogen was investigated in a fixed bed tubular reactor via steam reforming of methanol (SRM) using CuO∕ZnO∕Al2O3 catalysts prepared by wet impregnation method and characterized by measuring surface area, pore volume, x-ray diffraction patterns, and scanning electron microscopy photographs. The SRM was carried out at atmospheric pressure, temperature 493-573K, steam to methanol molar ratio 1–1.8 and contact-time (W/F) 3–15kg cat./(mol/s of methanol). Effects of reaction temperature, contact-time, steam to methanol molar ratio and zinc content of the catalyst on methanol conversion, selectivity, and product yields was evaluated. The addition of zinc enhanced the methanol conversion and hydrogen production. The excess steam promoted the methanol conversion and suppressed the carbon monoxide formation. Different strategies have been mentioned to minimize the carbon monoxide formation for the steam reforming of methanol to produce polymer electrolyte membrane (PEM) fuel cell grade hydrogen. Optimum operating conditions with appropriate composition of catalyst has been investigated to produce more selective hydrogen with minimum carbon monoxide. The experimental results were fitted well with the kinetic model available in literature.


2011 ◽  
Vol 324 ◽  
pp. 157-161 ◽  
Author(s):  
Mary Mrad ◽  
Cédric Gennequin ◽  
Antoine Aboukaïs ◽  
Edmond Abi-Aad

The performances of different xCu10Ce and xZn10Ce (x = 1, 3, and 5) catalysts prepared by impregnation method then pelletised, were investigated in the steam reforming of methanol (SRM) under a GHSV = 15500 h-1 with H2O/CH3OH = 2. The impregnation of copper over ceria supports shows better results than that of zinc. The catalytic activity in the Cu-based depends on the dispersion of the copper species. The methanol conversion rate is related to the formation of an optimum content of reduced copper species.


2020 ◽  
Vol 45 ◽  
pp. 146867831989184
Author(s):  
Xia An ◽  
Jia Ren ◽  
Weitao Hu ◽  
Xu Wu ◽  
Xianmei Xie

The production of hydrogen by steam reforming of ethanol was carried out on SBA-15-supported nano NiO catalyst synthesized by the equivalent-volume impregnation method with two different Ni sources (nickel nitrate and nickel sulfamate). The catalyst was characterized by N2 adsorption–desorption, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy to examine the physical and chemical properties. The activity tests were performed with the steam, with water/ethanol molar ratio ranging from 2:1 to 15:1, the N2 flow rate from 20 to 120 mL min−1 to determine the space-time, and the temperature range from 623 to 923 K on the two different Ni source catalysts. A favorable operating condition was established at 823 K using water/ethanol = 6 molar ratio and carrier gas (N2) flow of more than 50 mL min−1 for nickel nitrate source, but for nickel sulfamate source, the optimum temperature changed to 773 K and other conditions were the same as for the nickel nitrate source. After eliminating the influence of internal and external diffusion factors, an empirical power-law kinetic rate equation was derived from the experimental data. The non-linear regression method was used to estimate the kinetic parameter. The activation energy of the catalyst was then calculated, and the supported nickel nitrate and nickel sulfamate catalysts were 25.345 and 41.449 kJ mol−1, respectively, which was in agreement with the experimental and model-predicted results.


2011 ◽  
Vol 65 (3) ◽  
Author(s):  
Ahmed Bshish ◽  
Zahira Yaakob ◽  
Binitha Narayanan ◽  
Resmi Ramakrishnan ◽  
Ali Ebshish

AbstractProduction of hydrogen by steam-reforming of ethanol has been performed using different catalytic systems. The present review focuses on various catalyst systems used for this purpose. The activity of catalysts depends on several factors such as the nature of the active metal catalyst and the catalyst support, the precursor used, the method adopted for catalyst preparation, and the presence of promoters as well as reaction conditions like the water-to-ethanol molar ratio, temperature, and space velocity. Among the active metals used to date for hydrogen production from ethanol, promoted-Ni is found to be a suitable choice in terms of the activity of the resulting catalyst. Cu is the most commonly used promoter with nickel-based catalysts to overcome the inactivity of nickel in the water-gas shift reaction. γ-Al2O3 support has been preferred by many researchers because of its ability to withstand reaction conditions. However, γ-Al2O3, being acidic, possesses the disadvantage of favouring ethanol dehydration to ethylene which is considered to be a source of carbon deposit found on the catalyst. To overcome this difficulty and to obtain the long-term catalyst stability, basic oxide supports such as CeO2, MgO, La2O3, etc. are mixed with alumina which neutralises the acidic sites. Most of the catalysts which can provide higher ethanol conversion and hydrogen selectivity were prepared by a combination of impregnation method and sol-gel method. High temperature and high water-to-ethanol molar ratio are two important factors in increasing the ethanol conversion and hydrogen selectivity, whereas an increase in pressure can adversely affect hydrogen production.


2014 ◽  
Vol 699 ◽  
pp. 504-509
Author(s):  
Hafizah Abdul Halim Yun ◽  
Ramli Mat ◽  
Tuan Amran Tuan Abdullah ◽  
Mahadhir Mohamed ◽  
Anwar Johariand Asmadi Ali

The study focuses on hydrogen production via glycerol steam reforming over copper and nickel loaded on HZSM-5 zeolite based catalyst. The catalysts were prepared by using different loading amount of copper (0-10wt%) and nickel (0-10wt%) on HZSM-5 zeolite catalysts through wet impregnation method and was characterized by X-Ray Diffraction (XRD). The performances of catalysts were evaluated in terms of glycerol conversion and hydrogen production at 500°C using 6:1 of water to glycerol molar ratio (WGMR) in a tubular fixed bed reactor. All the catalysts had achieved more than 85% of glycerol conversion except that of 5%Cu loaded on HZSM-5 catalyst. The addition of nickel into 5% Cu/HZSM-5 catalyst had increased the hydrogen yield. Similar trend was observed when copper was added into Ni/HZSM-5 catalyst but using copper loaded on HZSM-5 alone was unable to produce hydrogen compared to using nickel catalyst alone. It showed that copper acted as a promoter for hydrogen production. It was established that a 5wt% of Cu with 10wt% of Ni loaded on HZSM-5 catalyst showed significant improvement in terms of hydrogen yield and gaseous product compositions at selected operating conditions.


Author(s):  
Wirya Sarwana ◽  
Akihiko Anzai ◽  
Daichi Takami ◽  
Akira Yamamoto ◽  
Hisao Yoshida

Photocatalytic steam reforming of methane (PSRM) has been studied as an attractive method to produce hydrogen by utilizing photoenergy like solar energy around room temperature with metal-loaded photocatalysts, where methane...


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Silvan Siegrist ◽  
Henrik von Storch ◽  
Martin Roeb ◽  
Christian Sattler

Three crucial aspects still to be overcome to achieve commercial competitiveness of the solar thermochemical production of hydrogen and carbon monoxide are recuperating the heat from the solid phase, achieving continuous or on-demand production beyond the hours of sunshine, and scaling to commercial plant sizes. To tackle all three aspects, we propose a moving brick receiver–reactor (MBR2) design with a solid–solid heat exchanger. The MBR2 consists of porous bricks that are reversibly mounted on a high temperature transport mechanism, a receiver–reactor where the bricks are reduced by passing through the concentrated solar radiation, a solid–solid heat exchanger under partial vacuum in which the reduced bricks transfer heat to the oxidized bricks, a first storage for the reduced bricks, an oxidation reactor, and a second storage for the oxidized bricks. The bricks may be made of any nonvolatile redox material suitable for a thermochemical two-step (TS) water splitting (WS) or carbon dioxide splitting (CDS) cycle. A first thermodynamic analysis shows that the MBR2 may be able to achieve solar-to-chemical conversion efficiencies of approximately 0.25. Additionally, we identify the desired operating conditions and show that the heat exchanger efficiency has to be higher than the fraction of recombination in order to increase the conversion efficiency.


2017 ◽  
Vol 898 ◽  
pp. 1905-1915 ◽  
Author(s):  
Kai Qi ◽  
Jun Lin Xie ◽  
Feng Xiang Li ◽  
Feng He

The samples of MnOx/TiO2 catalysts supported on cordierite honeycomb ceramics were prepared by a sol-gel-impregnation method, and evaluated for low-temperature (353-473 K) selective catalytic reduction (SCR) of NOx with NH3. The influences of pretreatment on cordierite and catalyst dosage were investigated at first and optimized as follows: pickling for cordierite honeycomb ceramics with 1 mol/L HNO3 for 3 h prior to loading procedure as well as the catalyst dosage of 3-5 wt.%. The activity results indicated that there was an optimum working condition for MnOx/TiO2/cordierite catalysts: NH3/NO molar ratio=1.1, [O2]=3 vol.%, GHSV=5514 h-1, the highest activity of nearly 100% NO conversion could be obtained. As a comparison, the performances of commercialized vanadium-based honeycomb catalyst were also employed, which revealed the narrower scope of application of GHSV and the higher active temperature window. In conclusion, it turns out that the prepared MnOx/TiO2/cordierite catalysts are more applicable as a low-temperature SCR catalyst for NOx removal in a more complicated application environment.


Sign in / Sign up

Export Citation Format

Share Document