scholarly journals A highly efficient and stable Ni/SBA-15 catalyst for hydrogen production by ethanol steam reforming

2020 ◽  
Vol 45 ◽  
pp. 146867831989184
Author(s):  
Xia An ◽  
Jia Ren ◽  
Weitao Hu ◽  
Xu Wu ◽  
Xianmei Xie

The production of hydrogen by steam reforming of ethanol was carried out on SBA-15-supported nano NiO catalyst synthesized by the equivalent-volume impregnation method with two different Ni sources (nickel nitrate and nickel sulfamate). The catalyst was characterized by N2 adsorption–desorption, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy to examine the physical and chemical properties. The activity tests were performed with the steam, with water/ethanol molar ratio ranging from 2:1 to 15:1, the N2 flow rate from 20 to 120 mL min−1 to determine the space-time, and the temperature range from 623 to 923 K on the two different Ni source catalysts. A favorable operating condition was established at 823 K using water/ethanol = 6 molar ratio and carrier gas (N2) flow of more than 50 mL min−1 for nickel nitrate source, but for nickel sulfamate source, the optimum temperature changed to 773 K and other conditions were the same as for the nickel nitrate source. After eliminating the influence of internal and external diffusion factors, an empirical power-law kinetic rate equation was derived from the experimental data. The non-linear regression method was used to estimate the kinetic parameter. The activation energy of the catalyst was then calculated, and the supported nickel nitrate and nickel sulfamate catalysts were 25.345 and 41.449 kJ mol−1, respectively, which was in agreement with the experimental and model-predicted results.

2011 ◽  
Vol 65 (3) ◽  
Author(s):  
Ahmed Bshish ◽  
Zahira Yaakob ◽  
Binitha Narayanan ◽  
Resmi Ramakrishnan ◽  
Ali Ebshish

AbstractProduction of hydrogen by steam-reforming of ethanol has been performed using different catalytic systems. The present review focuses on various catalyst systems used for this purpose. The activity of catalysts depends on several factors such as the nature of the active metal catalyst and the catalyst support, the precursor used, the method adopted for catalyst preparation, and the presence of promoters as well as reaction conditions like the water-to-ethanol molar ratio, temperature, and space velocity. Among the active metals used to date for hydrogen production from ethanol, promoted-Ni is found to be a suitable choice in terms of the activity of the resulting catalyst. Cu is the most commonly used promoter with nickel-based catalysts to overcome the inactivity of nickel in the water-gas shift reaction. γ-Al2O3 support has been preferred by many researchers because of its ability to withstand reaction conditions. However, γ-Al2O3, being acidic, possesses the disadvantage of favouring ethanol dehydration to ethylene which is considered to be a source of carbon deposit found on the catalyst. To overcome this difficulty and to obtain the long-term catalyst stability, basic oxide supports such as CeO2, MgO, La2O3, etc. are mixed with alumina which neutralises the acidic sites. Most of the catalysts which can provide higher ethanol conversion and hydrogen selectivity were prepared by a combination of impregnation method and sol-gel method. High temperature and high water-to-ethanol molar ratio are two important factors in increasing the ethanol conversion and hydrogen selectivity, whereas an increase in pressure can adversely affect hydrogen production.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 380 ◽  
Author(s):  
Pawel Mierczynski ◽  
Agnieszka Mierczynska ◽  
Radoslaw Ciesielski ◽  
Magdalena Mosinska ◽  
Magdalena Nowosielska ◽  
...  

Herein, we report monometallic Ni and bimetallic Pd–Ni catalysts supported on CeO2–Al2O3 binary oxide which are highly active and selective in oxy-steam reforming of methanol (OSRM). Monometallic and bimetallic supported catalysts were prepared by an impregnation method. The physicochemical properties of the catalytic systems were investigated using a range of methods such as: Brunauer–Emmett–Teller (BET), X-ray Powder Diffraction (XRD), Temperature-programmed reduction (TPR–H2), Temperature-programmed desorption (TPD–NH3), X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscope equipped with an energy dispersive spectrometer (SEM–EDS). We demonstrate that the addition of palladium facilitates the reduction of nickel catalysts. The activity tests performed for all catalysts confirmed the promotion effect of palladium on the catalytic activity of nickel catalyst and their selectivity towards hydrogen production. Both nickel and bimetallic palladium–nickel supported catalysts showed excellent stability during the reaction. The reported catalytic systems are valuable to make advances in the field of fuel cell technology.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 513 ◽  
Author(s):  
Haijie Sun ◽  
Zhihao Chen ◽  
Lingxia Chen ◽  
Huiji Li ◽  
Zhikun Peng ◽  
...  

m-ZrO2 (monoclinic phase) supported Ru-Zn catalysts and unsupported Ru-Zn catalysts were synthesized via the impregnation method and co-precipitation method, respectively. The catalytic activity and selectivity were evaluated for selective hydrogenation of benzene towards cyclohexene formation. Catalyst samples before and after catalytic experiments were thoroughly characterized via X-ray diffraction (XRD), X-ray Fluorescence (XRF), transmission electron microscopy (TEM), N2-sorption, X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and a contact angle meter. It was found that Zn mainly existed as ZnO, and its content was increased in Ru-Zn/m-ZrO2 by enhancing the Zn content during the preparation procedure. This results in the amount of formed (Zn(OH)2)3(ZnSO4)(H2O)3 increasing and the catalyst becoming more hydrophilic. Therefore, Ru-Zn/m-ZrO2 with adsorbed benzene would easily move from the oil phase into the aqueous phase, in which the synthesis of cyclohexene took place. The generated cyclohexene then went back into the oil phase, and the further hydrogenation of cyclohexene would be retarded because of the high hydrophilicity of Ru-Zn/m-ZrO2. Hence, the selectivity towards cyclohexene formation over Ru-Zn/m-ZrO2 improved by increasing the Zn content. When the theoretical molar ratio of Zn to Ru was 0.60, the highest cyclohexene yield of 60.9% was obtained over Ru-Zn (0.60)/m-ZrO2. On the other hand, when m-ZrO2 was utilized as the dispersant (i.e., employed as an additive during the reaction), the catalytic activity and selectivity towards cyclohexene synthesis over the unsupported Ru-Zn catalyst was lower than that achieved over the Ru-Zn catalyst with m-ZrO2 as the support. This is mainly because the supported catalyst sample demonstrated superior dispersion of Ru, higher content of (Zn(OH)2)3(ZnSO4)(H2O)3, and a stronger electronic effect between Ru and ZrO2. The Ru-Zn(0.60)/m-ZrO2 was reused 17 times without any regeneration, and no loss of catalytic activity and selectivity towards cyclohexene formation was observed.


Author(s):  
Sanjay Patel ◽  
K. K. Pant

The production of hydrogen was investigated in a fixed bed tubular reactor via steam reforming of methanol using CuO/ZnO/Al2O3 catalysts prepared by wet impregnation method and characterized by measuring surface area, pore volume, X-ray diffraction pattern and scanning electron microscopy photographs. The SRM was carried out at atmospheric pressure, temperature 493–573 K, steam to methanol molar ratio 1–1.8 and W/F 3 to 15. Effects of reaction temperature, contact-time, steam to methanol molar ratio and zinc content of catalyst on methanol conversion, selectivity and product yields were evaluated. The addition of zinc enhances the methanol conversion and hydrogen production. The excess steam promotes the methanol conversion and suppresses the carbon monoxide formation. Different strategies have been mentioned to minimize the carbon monoxide formation for the steam reforming of methanol to produce fuel cell grade hydrogen. Optimum operating conditions with appropriate composition of catalyst has been found to produce more selective hydrogen with minimum carbon monoxide. The reaction mechanism has been proposed based on the product distribution. The kinetic model available in literature fitted well with the experimental results.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 449 ◽  
Author(s):  
Nuria Sánchez ◽  
José María Encinar ◽  
Sergio Nogales ◽  
Juan Félix González

Nowadays, the massive production of biodiesel leads to a surplus of glycerol. Thus, new applications of this by-product are being developed. In this study, glycerol steam reforming was carried out with Ni catalysts supported on Al2O3 rings and La-modified Al2O3. The catalysts were characterized by N2 physical adsorption, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and thermogravimetry. Both catalysts were effective in glycerol steam reforming. However, Ni/Al2O3 activity decreased over reaction time. Ni/La2O3/Al2O3 showed the best stability during the reaction. In addition, the activity of the modified support, La2O3/Al2O3, was evaluated. The modification of the support lent catalytic properties to the solid. Some conditions such as catalyst arrangement (catalyst in the first or second reactor), space velocity, and reaction temperature were studied. The highest hydrogen production was obtained when half the amount of the catalyst was located in both reactors. Glycerol conversion into gases was similar, regardless the space velocity, although higher amounts of H2 were obtained when this variable decreased. Complete glycerol conversion into gases was obtained at 900 and 1000 °C, and hydrogen production reached a H2/glycerol molar ratio of 5.6. Finally, the presence of the catalyst and the optimization of these conditions increased the energy capacity of the produced stream.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 563 ◽  
Author(s):  
Tatyana Tabakova ◽  
Ivan Ivanov ◽  
Yordanka Karakirova ◽  
Daniela Karashanova ◽  
Anna Venezia ◽  
...  

The water-gas shift (WGS) reaction is a well-known industrial process used for the production of hydrogen. During the last few decades, it has attracted renewed attention due to the need for high-purity hydrogen for fuel-cell processing systems. The aim of the present study was to develop a cost-effective and catalytically efficient formulation that combined the advantageous properties of transition metal oxides and gold nanoparticles. Alumina-supported copper- manganese mixed oxides were prepared by wet impregnation. The deposition-precipitation method was used for the synthesis of gold catalysts. The effect of the Cu:Mn molar ratio and the role of Au addition on the WGS reaction’s performance was evaluated. Considerable emphasis was put on the characterization of the as-prepared and WGS-tested samples by means of a number of physicochemical methods (X-ray powder diffraction, high-resolution transmission electron microscopy, electron paramagnetic resonance, X-ray photoelectron spectroscopy, and temperature-programmed reduction) in order to explain the relationship between the structure and the reductive and WGS behavior. Catalytic tests revealed the promotional effect of gold addition. The best performance of the gold-promoted sample with a higher Cu content, i.e., a Cu:Mn molar ratio of 2:1 might be related to the beneficial role of Au on the spinel decomposition and the highly dispersed copper particle formation during the reaction, thus, ensuring the presence of two highly dispersed active metallic phases. High-surface-area alumina that was modified with a surface fraction of Cu–Mn mixed oxides favored the stabilization of finely dispersed gold particles. These new catalytic systems are very promising for practical applications due to their economic viability because the composition mainly includes alumina (80%).


2020 ◽  
Vol 16 (5) ◽  
pp. 837-845
Author(s):  
Kang Yang ◽  
Yafei Wang ◽  
Yujie Yang ◽  
Hongrui Hao ◽  
Xue Han

Background: The production of hydrogen from catalytic reforming ethanol has attracted wide attention, which provides a promising way to replace fossil fuels with sustainable energy carriers. Methods: In this work, the Ce1-xLaxO2-δ solid solution (CL) supported Rh catalysts (nRh/CL, n = 0.5, 1 and 2 wt.%) were prepared by a traditional impregnation method with a variation of Rh loading. The different interface structure of nRh/CL catalysts and their catalytic performance in oxidative steam reforming (OSR) reaction were investigated. Results: Rh was loaded by the traditional impregnation method, and ethanol conversion and H2 yield declined in the order of 1%Rh/CL > 2%Rh/CL > 0.5%Rh/CL. Conclusion: The supports of the nRh/CL catalysts were confirmed to be Ce1-xLaxO2-δ solid solution, but only for the 1%Rh/CL catalyst, the Rh species were well-dispersed on the support and formed a Rh2O3//Ce1-xLaxO2-δ interface structure. The super-cell structure of Rh3+-O-RE3/4+ (RE = Ce, La) on the surface of 0.5%Rh/CL catalyst and the formation of interfacial Ce1-x-yLaxRhyO2-δ solid solution for 2%Rh/CL catalyst had effects on the self-activation of the nRh/CL catalysts. The typical lattice expansion of Ce1-xLaxO2-δ solid solution lowered the energy for migration. And the excellent hydrogen and oxygen mobility at the Rh//Ce1-xLaxO2-δ interface for 1%Rh/CL catalyst guaranteed the good catalytic performance for OSR at low temperature.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 346
Author(s):  
Sonam Goyal ◽  
Maizatul Shima Shaharun ◽  
Ganaga Suriya Jayabal ◽  
Chong Fai Kait ◽  
Bawadi Abdullah ◽  
...  

A set of novel photocatalysts, i.e., copper-zirconia imidazolate (CuZrIm) frameworks, were synthesized using different zirconia molar ratios (i.e., 0.5, 1, and 1.5 mmol). The photoreduction process of CO2 to methanol in a continuous-flow stirred photoreactor at pressure and temperature of 1 atm and 25 °C, respectively, was studied. The physicochemical properties of the synthesized catalysts were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The highest methanol activity of 818.59 µmol/L.g was recorded when the CuZrIm1 catalyst with Cu/Zr/Im/NH4OH molar ratio of 2:1:4:2 (mmol/mmol/mmol/M) was employed. The enhanced yield is attributed to the presence of Cu2+ oxidation state and the uniformly dispersed active metals. The response surface methodology (RSM) was used to optimize the reaction parameters. The predicted results agreed well with the experimental ones with the correlation coefficient (R2) of 0.99. The optimization results showed that the highest methanol activity of 1054 µmol/L.g was recorded when the optimum parameters were employed, i.e., stirring rate (540 rpm), intensity of light (275 W/m2) and photocatalyst loading (1.3 g/L). The redox potential value for the CuZrIm1 shows that the reduction potential is −1.70 V and the oxidation potential is +1.28 V for the photoreduction of CO2 to methanol. The current work has established the potential utilization of the imidazolate framework as catalyst support for the photoreduction of CO2 to methanol.


2003 ◽  
Vol 18 (10) ◽  
pp. 2359-2363 ◽  
Author(s):  
Hongzhou Gu ◽  
Yunle Gu ◽  
Zhefeng Li ◽  
Yongcheng Ying ◽  
Yitai Qian

Nanoscale hollow spheres of amorphous phosphorus nitride (P3N5) were synthesized by reacting PCl3 with NaN3 at 150–250 °C. Transmission electron microscope images show that the hollow spheres have a diameter of 150–350 nm, and the thickness of the shell is 20 nm. A very small amount of curly films were also found in the sample prepared at 150 °C. The infrared spectrum indicates a high degree of purity. X-ray photoelectron spectroscopy indicates the presence of P and N, with a molar ratio of 1:1.62 for P:N. Ultraviolet-visible absorption spectroscopy shows an absorption band at 265–315 nm. Under photoluminescent excitation at 230 nm, the P3N5 emits ultraviolet light at 305 nm. With a band gap of 4.28 eV, the products may be a wide gap semiconductor. A possible mechanism and the influence of temperature on the formation of the hollow spheres are also discussed.


Sign in / Sign up

Export Citation Format

Share Document