scholarly journals Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

Author(s):  
Alex Tsai ◽  
Larry Banta ◽  
David Tucker ◽  
Randall Gemmen

This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.

Author(s):  
Alex Tsai ◽  
Larry Banta ◽  
David Tucker ◽  
Randall Gemmen

This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300 kW fuel cell coupled to a 120 kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-infinity robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow and the turbo machinery states of temperature and speed under transient disturbances. This algorithm is then tested on a SIMULINK/MATLAB platform for various perturbations of load and fuel cell heat effluence.


Author(s):  
G. Crosa ◽  
G. Ferrari ◽  
A. Trucco

This paper presents a dynamic simulation of a single shaft heavy-duty gas turbine plant, suitable for gas-steam combined cycles. The plant is operated at maximum gas turbine exhaust temperature, using variable inlet guide vanes (VIGV) as control. In the first section, a non-linear lumped parameter mathematical model is described: it includes a control system representative of those controls normally utilised by industry today. Some dynamic responses of a controlled plant taken as an example are presented. In the second section, a different control system is proposed, operating with no interaction between the speed and exhaust temperature loops. To this aim, a linear model in the frequency domain of the uncontrolled plant is obtained, starting from the non-linear model in the time domain. Assuming that each one of manipulated variables influences only one of the controlled variables (VIGV only the exhaust gas temperature and the fuel mass rate only the load), the transfer functions of two new blocks have been obtained. To compensate for the system non linearity, the calculations are repeated for different load levels. The new control feature can offer advantages in the time response of the regulated plant, especially in the operating range where the airflow can be modulated by the VIGV at constant fuel firing temperature.


2014 ◽  
Vol 659 ◽  
pp. 503-508
Author(s):  
Sorin Gabriel Vernica ◽  
Aneta Hazi ◽  
Gheorghe Hazi

Increasing the energy efficiency of a gas turbine plant can be achieved by exhaust gas heat recovery in a recovery boiler. Establishing some correlations between the parameters of the boiler and of the turbine is done usually based on mathematical models. In this paper it is determined from experimental point of view, the effectiveness of a heat recovery boiler, which operates together with a gas turbine power plant. Starting from the scheme for framing the measurement devices, we have developed a measurement procedure of the experimental data. For experimental data processing is applied the effectiveness - number of transfer unit method. Based on these experimental data we establish correlations between the recovery boiler effectiveness and the gas turbine plant characteristics. The method can be adapted depending on the type of flow in the recovery boiler.


Sign in / Sign up

Export Citation Format

Share Document