Experimental Determination of the Heat Recovery Boiler Effectiveness of a Gas Turbine Plant

2014 ◽  
Vol 659 ◽  
pp. 503-508
Author(s):  
Sorin Gabriel Vernica ◽  
Aneta Hazi ◽  
Gheorghe Hazi

Increasing the energy efficiency of a gas turbine plant can be achieved by exhaust gas heat recovery in a recovery boiler. Establishing some correlations between the parameters of the boiler and of the turbine is done usually based on mathematical models. In this paper it is determined from experimental point of view, the effectiveness of a heat recovery boiler, which operates together with a gas turbine power plant. Starting from the scheme for framing the measurement devices, we have developed a measurement procedure of the experimental data. For experimental data processing is applied the effectiveness - number of transfer unit method. Based on these experimental data we establish correlations between the recovery boiler effectiveness and the gas turbine plant characteristics. The method can be adapted depending on the type of flow in the recovery boiler.

2021 ◽  
Vol 2 (43) ◽  
pp. 20-35
Author(s):  
Andrey V. Dologlonyan ◽  
◽  
Dmitriy S. Strebkov ◽  
Valeriy T. Matveenko ◽  
◽  
...  

The article presents the results obtained during the study of the characteristics of hybrid solar micro-gas turbine units with an integrated parabolocylindrical solar collector. The efficiency of a hybrid solar gas turbine plant depends both on the efficiency of the solar collector and the location of its integration, and on the efficiency of the gas turbine engine. (Research purpose) The research purpose is in studying hybrid solar gas turbine installations based on a parabolocylindrical focusing solar collector in combination with micro-gas turbine engines of various configurations to determine the most suitable match. (Materials and methods) The article considers four basic schemes of gas turbine engines running on organic fuel, their parameters and optimization results. The article presents the main climatic parameters for the study of the focusing solar collector, as well as the parameters of the collector itself and the main dependencies that determine its efficiency and losses. The place of integration of the focusing solar collector into the gas turbine plant was described and justified. (Results and discussion) Hybrid solar micro-gas turbine installations based on micro-gas turbine engines of a simple cycle, a simple cycle with heat recovery, a simple cycle with a turbocharger utilizer, a simple cycle with a turbocharger utilizer and heat recovery for tropical climate conditions were studied on the example of Abu Dhabi. (Conclusions) The most suitable configuration of micro-gas turbine engines for integrating a focusing solar collector is a combination of a simple cycle with a turbocharger utilizer and regeneration. The combination of micro-gas turbine engines of a simple cycle with a turbocharger heat recovery and heat recovery with an integrated focusing solar collector can relatively increase the average annual efficiency of fuel consumption of such installations in a tropical climate by 10-35 percent or more, while maintaining cogeneration capabilities.


Author(s):  
Andrea Lazzaretto ◽  
Andrea Toffolo ◽  
Sebastiano Trolese

Precise performance evaluation at design and off-design operations is needed for a correct management of power plants. This need is particularly strong in gas turbine power plants which can quickly react to load variations and are very sensitive to ambient conditions. The paper aims at presenting a simple tool to determine the values of the thermodynamic quantities in each point of the plant and the overall plant performances of a real gas turbine plant. Starting from experimental data, a zero-dimensional model is developed which properly considers the effect of ambient conditions and water injection for pollutant abatement at different load settings under the action of the control system. An emission model taken from the literature is also included, after tuning on experimental data, to predict carbon monoxide and nitrogen oxide pollution.


Author(s):  
Eamonn Morrissey

This paper reviews the development of the Electricity Corporation of New Zealand’s first gas turbine based cogeneration project, discusses the design work performed, the project implementation and provides lessons learnt for future projects. The Project employs a TP&M FT4 TwinPac Gas Turbine Generator Set which has been relocated to Anchor Product’s dairy factory at Te Awamutu where it provides hot exhaust gas for a Heat Recovery Boiler which generates steam for use in the dairy factory processes and a steam turbine. The gas generators were converted from liquid fuel to natural gas and the free turbines were overhauled. All auxiliaries were relocated and upgraded as required by the new operating regime or changes in legislation, and a new microprocessor based Control and Instrumentation system purchased. Plant design is such that the Heat Recovery Boiler can accept hot gas from only one gas turbine at a time while the second is available for peaking duty as required.


Author(s):  
R. W. Foster-Pegg

A 10,000 kw gas turbine operating open exhaust burning gas worth 30 cents per mcf will reject heat worth $25 per hour. If the gas turbine is operated more than a few hours per year, this heat will be recovered, usually in a heat recovey boiler. It is fair to say that without heat recovery systems, base loaded gas turbines would not be practical in normal industry.


Author(s):  
Zheng Qun ◽  
Li Shunglong ◽  
Yang Yaogen

A type of coupled steam–gas turbine plant is proposed here. It is composed of a regenerative extraction steam turbine and a steam injected gas turbine. Extracted steam of the regenerative extraction steam cycle is not used to heat water through the regenerative feed–water heater as in conventional plant, but injected into a gas turbine to augment the output of the gas turbine, while the exhaust gas of the gas turbine now displaces the extracted steam to heat the feed water of the steam turbine plant. The proposed repowering turbine plant has two merits: the further utilization of extraction steam and the elimination of the complicated waste heat recovery boiler of a conventional steam injected gas turbine plant, in favor of a gas–to–water heat exchanger.


Author(s):  
J. C. Stewart ◽  
H. J. Stretch

This paper presents details of a heat-recovery boiler design as applied to gas turbine exhaust for the generation of steam. The factors involved in such applications are reviewed, together with an explanation of the heat-balance calculations and the limits that apply. A description is given of the parameters used in the design of the heat-transfer surface in the boiler. A specific design is described including details of the components in the boiler train. Reference is made to factors to be considered in erection and installation of this equipment. An explanation is included of the computer programs used to determine the optimum heat balance and for boiler selection and performance at “off-design” operating points. The operating performance of an actual installation is included.


Author(s):  
R. W. Foster-Pegg

A gas turbine cogeneration plant produces power and process steam. Under the PURPA law, surplus electric power can be sold to the local utility. Since process steam generally cannot be exported, it is better to have an excess of power than an excess of steam. Because of low rates offered for surplus power, or for other possible reasons, an owner may not wish to sell power, so it may be necessary to operate at a power-to-steam ratio that does not match the outputs of a gas turbine with a simple heat recovery boiler. If more steam is needed, supplementary firing may be included in the heat recovery boiler. If the need is for more power, a back pressure steam turbine can be included. This reduces the steam output by requiring higher steam pressure. Further power increase and steam reduction can be obtained with a condensing steam turbine. If neither the full steam output nor additional power is required, capital cost can be reduced by inclusion of a smaller, less-efficient heat recovery boiler. This paper compares these means of adjusting the power and steam outputs of a gas turbine cogeneration system to obtain the most cost effective system.


Sign in / Sign up

Export Citation Format

Share Document