Fuel Cell ASAP: Two Iterations of an Automated Stack Assembly Process and Ramifications for Fuel Cell Design-for-Manufacture Considerations

Author(s):  
Christina Laskowski ◽  
Stephen Derby

Polymer-electrode membrane (PEM) fuel cell technology, a low-emissions power source receiving much attention for its efficiency, will need to progress from low-volume production to high-volume within the course of the next decade. To successfully achieve this transition, significant research progress has already been made towards developing a fully-functional fuel cell automatic stack assembly robotic station. Lessons can be drawn from this research with regards to design-for-manufacture (DFM) and design-for-assembly (DFA) considerations of fuel cells; however, more work still remains to be done. This document outlines both iterations of the robotic fuel cell assembly stations, other work to date, DFM and DFA lessons learned, and the anticipated future progression of automatic fuel cell stack assembly stations. A literature search reveals numerous patents pertaining to equipment and processes for fuel cell assembly as well as a great number of patents pertaining to fuel cell stack features to aid in manufacture or assembly. However, most of this is focused upon proper compression of the membrane material, with little thought given to overall assembly and throughput. Journal articles have begun to consider real-world manufacturing considerations pertinent to production scale-up, but much remains to be done. Therefore, there is a need for more contributions to stack manufacture and assembly. Work already completed (by the authors and their lab) towards the manufacturing workcell specifically includes the design and construction of two individual robotic fuel cell assembly stations, including custom-built end effectors and parts feeders. The second station incorporated numerous improvements, including overlapping work envelopes, elimination of a shuttle cart, software synchronization, fewer axes, and a better end effector. Consequentially, the second workcell achieved a four-fold improvement in cycle time over the previous iteration. Future improvements will focus in part upon improving the reliability of the overall system. Close study of the manufacturing workcell indicated that stack component design features are key for production and scale-up of fuel cell stack manufacturing processes. Critical features are discussed in this article, as well as their ramifications for the overall stack design. As the stack assembly workcell continues to improve, research will focus upon the ramifications and interplay of tolerances, stack failure modes, sealing, reliability, and the potential for component redesign specifically to optimize fuel cell manufacturing throughput.

Author(s):  
Christina Laskowski ◽  
Stephen Derby

Polymer-electrode membrane fuel cell technology, a low-emission power source receiving much attention for its efficiency, will need to progress from low-volume production to high-volume within the course of the next decade. To successfully achieve this transition, significant research progress has already been made toward developing a fully functional fuel cell automatic stack assembly robotic station. Lessons can be drawn from this research with regards to design-for-manufacture (DFM) and design-for-assembly (DFA) considerations of fuel cells; however, more work still remains to be done. This document outlines both iterations of the robotic fuel cell assembly stations, other work to date, DFM and DFA lessons learned, and the anticipated future progression of automatic fuel cell stack assembly stations. Two individual robotic fuel cell assembly stations were constructed, including custom-built end effectors and part feeders. The second station incorporated numerous improvements, including overlapping work envelopes, elimination of a shuttle cart, software synchronization, fewer axes, and a better end effector. Consequentially, the second workcell achieved a fourfold improvement in cycle time over the previous iteration. Future improvements will focus in part upon improving the reliability of the overall system. As the stack assembly workcell continues to improve, research will focus upon the ramifications and interplay of tolerances, stack failure modes, sealing, reliability, and the potential for component redesign specifically to optimize fuel cell manufacturing throughput.


Author(s):  
Christina Laskowski ◽  
Stephen Derby

Polymer-electrode membrane (PEM) fuel cell technology will need to progress from low-volume production to high-volume within the course of the next decade. To successfully achieve this transition, a fully-functional fuel cell automatic stack assembly robotic station is being developed. This document outlines both iterations of the robotic fuel cell assembly stations, other work to date, DFM and DFA lessons learned, and the anticipated future progression of automatic fuel cell stack assembly stations. Two individual robotic fuel cell assembly stations were constructed, including custom-built end effectors and parts feeders. The second station incorporated numerous improvements, including overlapping work envelopes, elimination of a shuttle cart, software synchronization, fewer axes, and a better end effector. Consequentially, the second workcell achieved a four-fold improvement in cycle time over the previous iteration. Future improvements will focus in part upon improving the reliability of the overall system. As the stack assembly workcell continues to improve, research will focus upon the ramifications and interplay of tolerances, stack failure modes, sealing, reliability, and the potential for component redesign specifically to optimize fuel cell manufacturing throughput.


Author(s):  
Christina Laskowski ◽  
Ryan Gallagher ◽  
Andrew Winn ◽  
Stephen Derby

Within the next decade, proton-exchange membrane (PEM) fuel cell technology will need to progress from low-volume to high-volume production. The second of two fully-functional fuel cell stack assembly robotic stations is being developed to meet the requirements for this transition; meanwhile, a fuel cell stack is being modified to ease the challenges of automated assembly. This document outlines the most recent iteration of the robotic fuel cell assembly station, challenges encountered, stack design features which impair automation efforts, stack modifications and their impact on assembly success, and a methodology for designing successful stacks in tomorrow’s automated assembly plants. Numerous design aspects of the stack, intended for manual assembly, proved challenging for robotic assembly: in particular, those pertaining to component tolerances, stack compliance, fasteners, environmental requirements, overall stack alignment, MEA handling, and part alignment verification. Each of these challenges was addressed during the refinement of the second robotic station, in many cases via modification of the stack. Nonetheless, each of these factors represents a continuing liability, both in cost and time, to rapid, accurate, reliable stack assembly. Methodology for incorporating these critical design-for-manufacture considerations into future stack designs is therefore addressed as well. As the stack assembly workcell continues to improve, research will focus upon further stack redesign specifically to optimize fuel cell manufacturing throughput.


2018 ◽  
Vol 230 ◽  
pp. 1633-1644 ◽  
Author(s):  
Fabian Fischer ◽  
Marc Sugnaux ◽  
Cyrille Savy ◽  
Gérald Hugenin

Author(s):  
Richard S. Webb ◽  
Alvin H. Feingold ◽  
Zachary J. Topka ◽  
Eric R. Twiname

One challenge faced by developers of solid oxide fuel cells and cell stacks is obtaining high-quality fuel cell materials consistently, economically and in large volumes — that is, materials which are manufacturable. Two viable materials technologies are continuously-cast ceramic tapes and thick-film pastes. Paste and tape processing, whether proprietary to the fuel cell manufacturer or the materials supplier, should follow ISO 9001:2000 and, for automotive applications, QS-9000 and ISO/TS 16949 guidelines. This paper describes manufacturing of SOFC tapes and pastes using these guidelines from prototype through scale-up to high volume quantities.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 217 ◽  
Author(s):  
Rodrigo Valladares Linares ◽  
Jorge Domínguez-Maldonado ◽  
Ernesto Rodríguez-Leal ◽  
Gabriel Patrón ◽  
Alfonso Castillo-Hernández ◽  
...  

The most important operational expense during wastewater treatment is electricity for pumping and aeration. Therefore, this work evaluated operational parameters and contaminant removal efficiency of a microbial fuel cell stack system (MFCSS) that uses no electricity. This system consists of (i) septic tank primary treatment, (ii) chamber for secondary treatment containing 18 MFCs, coupled to an energy-harvesting circuit (EHC) that stores the electrons produced by anaerobic respiration, and (iii) gravity-driven disinfection (sodium hypochlorite 5%). The MFCSS operated during 60 days (after stabilization period) and it was gravity-fed with real domestic wastewater from a house (5 inhabitants). The flow rate was 600 ± 100 L∙d−1. The chemical oxygen demand, biological oxygen demand, total nitrogen and total phosphorous were measured in effluent, with values of 100 ± 10; 12 ± 2; 9.6 ± 0.5 and 4 ± 0.2 mg∙L−1, and removal values of 86%, 87%, 84% and 64%, respectively. Likewise, an EHC (ultra-low energy consumption) was built with 6.3 V UCC® 4700 µF capacitors that harvested and stored energy from MFCs in parallel. Energy management was programmed on a microcontroller Atmega 328PB®. The water quality of the treated effluent complied with the maximum levels set by the Mexican Official Standard NOM-001-SEMARNAT-1996-C. A cost analysis showed that MFCSS could be competitive as a sustainable and energy-efficient technology for real domestic wastewater treatment.


2008 ◽  
Vol 128 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yoshitaka Inui ◽  
Tadashi Tanaka ◽  
Tomoyoshi Kanno

2008 ◽  
Vol 1 (06) ◽  
pp. 329-334
Author(s):  
S. Rabih ◽  
C. Turpin ◽  
S. Astier

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4048
Author(s):  
Huu Linh Nguyen ◽  
Jeasu Han ◽  
Xuan Linh Nguyen ◽  
Sangseok Yu ◽  
Young-Mo Goo ◽  
...  

Durability is the most pressing issue preventing the efficient commercialization of polymer electrolyte membrane fuel cell (PEMFC) stationary and transportation applications. A big barrier to overcoming the durability limitations is gaining a better understanding of failure modes for user profiles. In addition, durability test protocols for determining the lifetime of PEMFCs are important factors in the development of the technology. These methods are designed to gather enough data about the cell/stack to understand its efficiency and durability without causing it to fail. They also provide some indication of the cell/stack’s age in terms of changes in performance over time. Based on a study of the literature, the fundamental factors influencing PEMFC long-term durability and the durability test protocols for both PEMFC stationary and transportation applications were discussed and outlined in depth in this review. This brief analysis should provide engineers and researchers with a fast overview as well as a useful toolbox for investigating PEMFC durability issues.


Sign in / Sign up

Export Citation Format

Share Document