Automated Fuel Cell Stack Assembly: Lessons in Design-for-Manufacture

Author(s):  
Christina Laskowski ◽  
Ryan Gallagher ◽  
Andrew Winn ◽  
Stephen Derby

Within the next decade, proton-exchange membrane (PEM) fuel cell technology will need to progress from low-volume to high-volume production. The second of two fully-functional fuel cell stack assembly robotic stations is being developed to meet the requirements for this transition; meanwhile, a fuel cell stack is being modified to ease the challenges of automated assembly. This document outlines the most recent iteration of the robotic fuel cell assembly station, challenges encountered, stack design features which impair automation efforts, stack modifications and their impact on assembly success, and a methodology for designing successful stacks in tomorrow’s automated assembly plants. Numerous design aspects of the stack, intended for manual assembly, proved challenging for robotic assembly: in particular, those pertaining to component tolerances, stack compliance, fasteners, environmental requirements, overall stack alignment, MEA handling, and part alignment verification. Each of these challenges was addressed during the refinement of the second robotic station, in many cases via modification of the stack. Nonetheless, each of these factors represents a continuing liability, both in cost and time, to rapid, accurate, reliable stack assembly. Methodology for incorporating these critical design-for-manufacture considerations into future stack designs is therefore addressed as well. As the stack assembly workcell continues to improve, research will focus upon further stack redesign specifically to optimize fuel cell manufacturing throughput.

Author(s):  
Frano Barbir ◽  
Haluk Gorgun ◽  
Xinting Wang

Pressure drop on the cathode side of a PEM (Proton Exchange Membrane) fuel cell stack has been studied and used as a diagnostic tool. Since the Reynolds number at the beginning of the flow field channel was <250, the flow through the channel is laminar, and the relationship between the pressure drop and the flow rate is linear. Some departure from linearity was observed when water was either introduced in the stack or produced inside the stack in the electrochemical reaction. By monitoring the pressure drop in conjunction with the cell resistance in an operational fuel cell stack, it was possible to diagnose either flooding or drying conditions inside the stack.


2018 ◽  
Vol 43 (7) ◽  
pp. 2605-2614 ◽  
Author(s):  
Kailin Fu ◽  
Tian Tian ◽  
Yanan Chen ◽  
Shang Li ◽  
Chao Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document