Nonlinear Analysis of Two-Phase Instabilities in PEMFC Parallel-Channel Cathodes

Author(s):  
Nicholas Siefert ◽  
Chi-Hsin Ho ◽  
Shawn Litster

Liquid water management is a critical issue in the development of proton exchange membrane (PEM) fuel cells. Liquid water produced electrochemically can accumulate and flood the microchannels in the cathodes of PEM fuel cells. Since the liquid coverage of the cathode can fluctuate in time for two-phase flow, the rate of oxygen transport to the cathode catalyst layer can also fluctuate in time, and this can cause the fuel cell power output to fluctuate. This paper will report experimental data on the voltage loss and the voltage fluctuations of a PEM fuel cell due to flooding as a function of the number of parallel microchannels and the air flow rate stoichiometric ratio. The data was analyzed to identify general scaling relationships between voltage loss and fluctuations and the number of channels in parallel and the air stoichiometric ratio. The voltage loss was found to scale proportionally to the square root of the number of channels divided by the air stoichiometric ratio. The amplitude of the fluctuations was found to be linearly proportional to the number of microchannels and inversely proportional to the air stoichiometric ratio squared. The data was further analyzed by plotting power spectrums and by evaluating the non-linear statistics of the voltage time-series.

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Chao Si ◽  
Xiao-Dong Wang ◽  
Wei-Mon Yan ◽  
Tian-Hu Wang

Water transport and the corresponding water management strategy in proton exchange membrane (PEM) fuel cells are quite critical for the improvement of the cell performance. Accuracy modeling of water transport in porous electrodes strongly depends on the appropriate constitutive relationship for capillary pressure which is referred to aspc-scorrelation, wherepcis the capillary pressure andsis the fraction of saturation in the pores. In the present PEM fuel cell two-phase models, the Leverett-Udellpc-scorrelation is widely utilized which is proposed based on fitting the experimental data for packed sands. However, the size and structure of pores for the commercial porous electrodes used in PEM fuel cells differ from those for the packed sands significantly. As a result, the Leverett-Udell correlation should be improper to characterize the two-phase transport in the porous electrodes. In the recent decade, many efforts were devoted to measuring the capillary pressure data and developing newpc-scorrelations. The objective of this review is to review the most significant developments in recent years concerning the capillary pressure measurements and the developedpc-scorrelations. It is expected that this review will be beneficial to develop the improved PEM fuel cell two-phase model.


1999 ◽  
Author(s):  
C. Y. Wang ◽  
Z. H. Wang ◽  
Y. Pan

Abstract Proton exchange membrane (PEM) fuel cells have emerged, in the last decade, as a viable technology for power generation and energy conversion. Fuel cell (FC) engines for vehicular applications possess many attributes such as high fuel efficiency, low emission, quiet and low temperature operation, and modularity. An important phenomenon limiting fuel cell performance is the two-phase flow and transport of fuel and oxidant from flow channels to reaction sites. In this paper a mathematical model is presented to study the two-phase flow dynamics, multi-component transport and electrochemical kinetics in the air cathode, the most important component of the hydrogen PEM fuel cell. A major feature of the present model is that it unifies single- and two-phase analyses for low and high current densities, respectively, and it is capable of predicting the threshold current density corresponding to the onset of liquid water formation in the air cathode. A numerical study based on the finite volume method is then undertaken to calculate the detailed distributions of local current density, oxygen concentration, water vapor concentration and liquid water saturation as well as their effects on the cell polarization curve. The simulated polarization curve and predicted threshold current density corresponding to the onset of liquid water formation for a single-channel, 5cm2 fuel cell compare favorably with experimental results. Quantitative comparisons with experiments presently being conducted at our laboratory will be reported in a forthcoming paper.


Author(s):  
Michael Pien ◽  
Steven Lis ◽  
Radha Jalan ◽  
Marvin Warshay ◽  
Suresh Pahwa

Higher efficiency operation of PEM fuel cells needs an advanced passive way to remove product water. Water flooding in gas flow channels reduces efficiency and needs to be mitigated by a support of balance of plant design and components which results in parasitic power losses. ElectroChem’s Integrated Flow Field (IFF) design with the integration of hydrophobic and hydrophilic matrix has been proven to solve these challenges with no impact on the performance. The hydrophobic and hydrophilic matrix facilitates two phase (gas and liquid) flow to and away from the interface between the electrode membrane assembly and the flow field. A phase-separation feature of the IFF allowed the fuel cells to operate on a flow rate at its consumption rate. The IFF fuel cell has demonstrated operation at the ideal one stoichiometric ratio with 100% gas utilization and orientation independent. The IFF also served as gas humidifier through the creation of simultaneous distribution of gas and water within the cell. The self-humidification capability keeps the cell operating without the humidity of the input gas. The IFF design also enhanced the performance of water electrolysis which is a reverse process of fuel cell. The IFF supported the passive water feed to the cell and gas separation from the cell.


Author(s):  
Scott A. Kenner ◽  
Nicholas M. Josefik ◽  
Scott M. Lux ◽  
James L. Knight ◽  
Melissa K. White ◽  
...  

Background: The U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) continues to manage The Department of Defense (DoD) Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Project. This project was funded by the United States Congress for fiscal years 2001 through 2004. A fleet of 91 residential-scale PEM fuel cells, ranging in size from 1 to 5 kW, has been demonstrated at various U.S. DoD facilities around the world. Approach: The performance of the fuel cells has been monitored over a 12-month field demonstration period. A detailed analysis has been performed cataloging the component failures, investigating the mean time of the failures, and the mean time between failures. A discussion of the lifespan and failure modes of selected fuel cell components, based on component type, age, and usage will be provided. This analysis also addresses fuel cell stack life for both primary and back-up power systems. Several fuels were used throughout the demonstration, including natural gas, propane, and hydrogen. A distinction will be made on any variances in performance based on the input fuel stock. Summary: This analysis will provide an overview of the ERDC-CERL PEM demonstration fuel cell applications and the corresponding data from the field demonstrations. Special emphasis will be placed on the components, fuel cell stack life, and input fuel characteristics of the systems demonstrated.


2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


2018 ◽  
Vol 388 ◽  
pp. 350-360 ◽  
Author(s):  
Chang Jie Li ◽  
Ye Liu ◽  
Zhe Shu Ma

An irreversible model of proton exchange membrane fuel cells working at steady-state is established, in which the irreversibility resulting from overpotentials, internal currents and leakage currents are taken into account.In this paper, the irreversibility of fuel cell is expounded mainly from electrochemistry. The general performance characteristic curves are generated including output voltage, output power and output efficiency. In addition, the irreversibility of a class of PEMFC is studied by changing the operating conditions (controllable factors) of the fuel cell, including effect of operating temperature, operating pressure and leakage current. The results provide a theoretical basis for both the operation and optimal design of real PEM fuel cells.


Author(s):  
Kristopher Inman ◽  
Xia Wang ◽  
Brian Sangerozan

Thermal and water management in Proton Exchange Membrane (PEM) fuel cells provide a significant challenge for engineers and fuel cell designers as both have a direct effect on performance and durability. Internal temperature is very difficult to measure due to component geometry and the internal environment possessed by PEM fuel cells along with a lack of sufficient temperature measurement methods which are often highly invasive. This research presents initial developments for creating a non-intrusive temperature measurement system, based on the principles of phosphor thermometry, which also has the ability to optically detect liquid water formation and movement in PEMFC gas channels. The sensor was designed, calibrated and then installed in a 25 cm2 PEM fuel cell for in-situ testing. The experimental data show that a relationship exists between temperature variation and water droplet movement in gas channels of a PEM fuel cell.


2009 ◽  
Vol 23 (03) ◽  
pp. 537-540 ◽  
Author(s):  
JIANG HUI YIN ◽  
JUN CAO

A general proton exchange membrane fuel cell model including two finite-thickness catalysts is developed in this study, allowing for an in-depth understanding of the effects of the two key electrochemical reactions taking place in the two catalysts. The model is used to predict the performances of fuel cells employing two different flow channel designs, providing insights for fuel cell design and performance optimization.


Sign in / Sign up

Export Citation Format

Share Document