Rib Spacing Effect on Heat Transfer and Pressure Loss in a Rotating Two-Pass Rectangular Channel (AR=1:2) With 45-Degree Angled Ribs

Author(s):  
Yao-Hsien Liu ◽  
Lesley M. Wright ◽  
Wen-Lung Fu ◽  
Je-Chin Han

Rib turbulators are commonly used to enhance the heat transfer within internal cooling passages of advanced gas turbine blades. Many factors affect the thermal performance of a cooling channel with ribs. This study experimentally investigates the effect of rib spacing on the heat transfer enhancement, pressure penalty, and thus the overall thermal performance in both rotating and non-rotating rectangular, cooling channels. In the 1:2 rectangular channels, 45° angled ribs are placed on the leading and trailing surfaces. The pitch of the ribs varies, so rib pitch-to-height (P/e) ratios of 10, 7.5, 5, and 3 are considered. Square ribs with a 1.59 mm × 1.59 mm cross-section are used for all spacings, so the height-to-hydraulic diameter (e/Dh) ratio remains constant at 0.094. With a constant rotational speed of 550 rpm and the Reynolds number ranging from 5000 to 40000, the rotation number in turn varies from 0.2 to 0.02. Because the skewed turbulators induce secondary flow along the length of the rib, the very close rib spacing of P/e = 3, has the best thermal performance in both rotating and non-rotating channels. This close spacing yields the greatest heat transfer enhancement, while the P/e = 5 spacing has the greatest pressure penalty. In addition, the effect of rotation is more pronounced in the channel with the rib spacing of 3. As more ribs are added, the channel is approaching a smooth channel, and the strength of the rotation induced vortices increases.


Author(s):  
Jibing Lan ◽  
Yonghui Xie ◽  
Di Zhang

Rib turbulators can enhance the heat transfer successfully, but in most cases this is associated with large pressure loss penalties. Recently, dimple techniques become an attractive method for gas turbine blade internal cooling because dimples enhance heat transfer with low pressure penalty. In the present paper, a compound heat transfer enhancement technique, heat transfer enhancement in rectangular channel (Aspect ratio = 4) with the combination of ribs, dimples and protrusions, are investigated. The calculations are conducted on five different channel configurations. Case 1 which is the baseline configuration is a rectangular channel with rectangular ribs (e/Dh = 0.078, P/e = 10). In case 2, one row of dimples are placed between two ribs. In case 3, instead of dimples, one row of protrusions are placed between two ribs. In case 4, three rows of dimples are place between two ribs. Case 5 places three rows of protrusions between two ribs instead of dimples. The present paper focuses on Reynolds numbers (based on the channel hydraulic diameter) ranging from 10000 to 60000. In all configurations, the non-dimensional dimple/protrusion depths are 0.2. The results show that the rib+dimple cases provide minor increase in Nu/Nu0, f/f0 and thermal performance. Within the Reynolds number range studied, the Nu/Nu0 values of the three row rib+protrusion case is 17% ∼ 7% higher than that of the baseline case, and the decrease in f/f0 is about 10%. The thermal performance of the three row rib+protrusion case is about 16% higher than that of the baseline case. The Nu/Nu0 values of the one row rib+protrusion case is about 9% higher than that of the baseline case, and the decrease in f/f0 is about 12%. The thermal performance of the one row rib+protrusion case is about 14% higher than that of the baseline case. It can be concluded that rib+protrusion technique in rectangular channel has the potential to provide heat transfer enhancement with low pressure penalty.



Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4826
Author(s):  
Wei-Jie Su ◽  
Yao-Hsien Liu

Convective heat transfer enhancement using rib turbulators is effective for turbine blade internal cooling. Detailed heat transfer measurement of X-shaped ribs in a trapezoidal cooling channel was experimentally conducted using infrared thermography. The novel X-shaped ribs were designed by combining two V-shaped ribs, and more secondary flows generated by the X rib delivered higher heat transfer enhancement. The Reynolds numbers in this study were 10,000, 20,000, and 30,000. These ribs were installed on two opposite walls of a trapezoidal channel in a staggered arrangement. The rib pitch-to-height ratios were 10 and 20, and the rib height-to-hydraulic diameter ratio was 0.128. Results indicated that higher heat transfer distribution was observed in the vicinity of the shorter base in the trapezoidal channel. The full X-shaped ribs and the V-shaped ribs demonstrated the highest Nusselt number ratios among all the cases. Although full X-shaped ribs contributed to higher heat transfer improvement due to intensified secondary flows, they also caused significant pressure loss. Therefore, the cutback X-shaped ribs were proposed by removing a segment in the rib at either upstream or downstream region. Consequently, the upstream cutback X-shaped rib and the V-shaped rib produced the highest thermal performance in this trapezoidal channel.



Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.



2021 ◽  
pp. 1-28
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using Large Eddy Simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, there is a penalty for increased pressure drop. The highest pressure drop affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth to diameter ratio showed the highest thermal performance.



Author(s):  
Lesley M. Wright ◽  
Eungsuk Lee ◽  
Je-Chin Han

The effect of entrance geometry on the heat transfer in rotating, narrow rectangular cooling channels is investigated in this study. Both smooth channels and channels with angled ribs are considered with three different entrance conditions: fully developed, sudden contraction, partial sudden contraction. The rectangular channel has as aspect ratio of 4:1, and it is oriented at 135° with respect to the plane of rotation. In the test section with angled ribs, the ribs are angled at 45° to the mainstream flow. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.078, and the rib pitch-to-height ratio (P/e) is 10. The range of flow parameters includes Reynolds number (Re = 5000–40000), rotation number (Ro = 0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ = 0.12). The heat transfer at the entrance of the heated portion of the smooth channel is significantly enhanced with the sudden contraction and partial sudden contraction entrances. In the smooth rotating channels, the effect of the entrance geometry is also present; however, as the rotation number increases, the effect of the entrance geometry decreases. It was also found in this study that the sudden and partial sudden contraction entrances provide higher heat transfer enhancement than the fully developed entrance through the first 3 to 4 hydraulic diameters of the channels with angled ribs. Again, the effect of the entrance geometry is greater in the stationary channels with angled ribs than the rotating channels with ribs. In both stationary and rotating channels, the influence of the entrance geometry on the heat transfer is more apparent in the smooth channels than in the ribbed channels.



2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Sin Chien Siw ◽  
Minking K. Chyu ◽  
Tom I.-P. Shih ◽  
Mary Anne Alvin

Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W = 76.2 mm, E = 25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D = 6.35 mm = ¼E, three different pin-fin height-to-diameter ratios, H/D = 4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin tip and one of the endwalls, i.e., C/D = 0, 1, 2, respectively. The Reynolds number, based on the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin tip and the endwall has a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D, leads to lower heat transfer enhancement and pressure drop. However, C/D = 1, i.e., H/D = 3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D = 0 and C/D = 2, i.e., H/D = 4 or 2, respectively.



Author(s):  
Wenwu Zhou ◽  
Hui Hu ◽  
Yu Rao

Due to the dimple’s unique characteristics of comparatively low pressure loss penalty and good heat transfer enhancement performance, dimple provides a very desirable alternative internal cooling technique for gas turbine blades. In the present study, an experimental investigation was conducted to quantify the flow characteristics over staggered dimple arrays and to examine the vortex structures inside the dimples. In addition to the surface pressure measurements, a high-resolution digital Particle Image Velocimetry (PIV) system was also utilized to achieve detailed flow field measurements to quantify the characteristics of the turbulent channel flow over the dimple arrays in terms of the ensemble-averaged velocity, Reynolds shear stress and turbulence kinetic energy (TKE) distributions. The experimental measurement results show that the friction factor of the dimpled surface is much higher than that of a flat surface. The measured pressure distribution within a dimple reveals clearly that flow separation and attachment would occur inside each dimple. In comparison with those of a conventional channel flow with flat surface, the channel flow over the dimpled arrays was found to have much stronger Reynolds stress and higher TKE level. Such unique flow characteristics are believed to be the reasons why a dimpled surface would have a better heat transfer enhancement performance for internal cooling of turbine blades as reported in those previous studies.



2001 ◽  
Author(s):  
Srinath V. Ekkad ◽  
Hasan Nasir

Abstract Detailed heat transfer measurements are presented for a rectangular channel with dimples on one wall. Dimpled surfaces provide high heat transfer enhancement comparable to ribbed surfaces with reduced overall pressure drop. The heat transfer coefficients were measured using a transient liquid crystal technique. The effect of channel flow Reynolds number was investigated for a wide range from 10000 to 65000. The channel is a 25.4 mm × 101.6 mm (1” × 4”) rectangular cross-section with the dimples on one of the 101.6 mm wall. Heat transfer enhancement around three times that of a smooth channel were achieved for all flow conditions. The overall pressure drop through the dimpled section of the passage was also measured. The resulting thermal performance of the dimples surfaces is significantly higher compared to channels with protruding ribs.



Author(s):  
Karsten Kusterer ◽  
Gang Lin ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
Ryozo Tanaka ◽  
...  

Improvement of the gas turbine thermal efficiency can be achieved by reducing the cooling fluid amount in internal cooling channels with enhanced convective cooling. Nowadays the state of the art internal cooling technology for thermally high-loaded gas turbine blades consists of multiple serpentine-shaped cooling channels with angled ribs. Besides, huge effort is put on the development of more advanced internal cooling configurations with further internal heat transfer enhancements. Swirl chamber flow configurations, in which air is flowing through a pipe with a swirling motion generated by tangential jet inlet, have a potential for application as such advanced technology. This paper presents the validation of numerical results for a standard swirl chamber, which has been investigated experimentally in a reference publication. The numerical results obtained with application of the SST k-ω model show the best agreement with the experiment data in compare with other turbulence models. It has been found at the inlet region that the augmentation of the heat transfer is nearly seven times larger than the fully developed non-swirl flow. Within the further numerical study, another cooling configuration named Double Swirl Chambers (DSC) has been obtained and investigated. The numerical results are compared to the reference case. With the same boundary conditions and Reynolds number, the heat transfer coefficients are higher for the DSC configuration than for the reference configuration. In particular at the inlet region, the DSC configuration has even higher circumferentially averaged heat transfer enhancement in one section by approximately 41%. The globally-averaged heat transfer enhancement in DSC configuration is 34.5% higher than the value in the reference SC configuration. This paper presents the configuration of the DSC as an alternative internal cooling technology and explains its major physical phenomena, which are the reasons for the improvement of internal heat transfer.



Author(s):  
Sin Chien Siw ◽  
Minking K. Chyu ◽  
Tom I.-P. Shih ◽  
Mary Anne Alvin

Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W = 101.6 mm, E = 25.4 mm) simulates an internal cooling passage of wide aspect ratio (4:1) in a gas turbine airfoil. With a given pin diameter, D = 6.35 mm = 1/4 E, three different pin-fin height-to-diameter ratios, H/D = 4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin-tip and one of the endwalls, i.e. C/D = 0, 1, 2, respectively. The Reynolds number, based on the hydraulic diameter of the un-obstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin-tip and the endwall have a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D leads to lower heat transfer enhancement and pressure drop. However, C/D = 1, i.e. H/D = 3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D = 0 and C/D = 2, i.e. H/D = 4 or 2, respectively.



Sign in / Sign up

Export Citation Format

Share Document