Influence of Entrance Geometry on Heat Transfer in Narrow Rectangular Cooling Channels (AR = 4:1) With Angled Ribs

Author(s):  
Lesley M. Wright ◽  
Eungsuk Lee ◽  
Je-Chin Han

The effect of entrance geometry on the heat transfer in rotating, narrow rectangular cooling channels is investigated in this study. Both smooth channels and channels with angled ribs are considered with three different entrance conditions: fully developed, sudden contraction, partial sudden contraction. The rectangular channel has as aspect ratio of 4:1, and it is oriented at 135° with respect to the plane of rotation. In the test section with angled ribs, the ribs are angled at 45° to the mainstream flow. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.078, and the rib pitch-to-height ratio (P/e) is 10. The range of flow parameters includes Reynolds number (Re = 5000–40000), rotation number (Ro = 0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ = 0.12). The heat transfer at the entrance of the heated portion of the smooth channel is significantly enhanced with the sudden contraction and partial sudden contraction entrances. In the smooth rotating channels, the effect of the entrance geometry is also present; however, as the rotation number increases, the effect of the entrance geometry decreases. It was also found in this study that the sudden and partial sudden contraction entrances provide higher heat transfer enhancement than the fully developed entrance through the first 3 to 4 hydraulic diameters of the channels with angled ribs. Again, the effect of the entrance geometry is greater in the stationary channels with angled ribs than the rotating channels with ribs. In both stationary and rotating channels, the influence of the entrance geometry on the heat transfer is more apparent in the smooth channels than in the ribbed channels.

2005 ◽  
Vol 127 (4) ◽  
pp. 378-387 ◽  
Author(s):  
Lesley M. Wright ◽  
Wen-Lung Fu ◽  
Je-Chin Han

The effect of entrance geometry on the heat transfer in rotating, narrow rectangular cooling channels is investigated in this study. Both smooth channels and channels with angled ribs are considered with three different entrance conditions: fully developed, sudden contraction, and partial sudden contraction. The rectangular channel has as aspect ratio of 4:1, and it is oriented at 135° with respect to the plane of rotation. In the test section with angled ribs, the ribs are angled at 45° to the mainstream flow. The rib height-to-hydraulic diameter ratio e/Dh is 0.078, and the rib pitch-to-height ratio P/e is 10. The range of flow parameters includes Reynolds number (Re=5000–40,000), rotation number (Ro=0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ=0.12). The heat transfer at the entrance of the heated portion of the smooth channel is significantly enhanced with the sudden contraction and partial sudden contraction entrances. In the smooth rotating channels, the effect of the entrance geometry is also present; however, as the rotation number increases, the effect of the entrance geometry decreases. It was also found in this study that the sudden and partial sudden contraction entrances provide higher heat transfer enhancement than the fully developed entrance through the first three to four hydraulic diameters of the channels with angled ribs. Again, the effect of the entrance geometry is greater in the stationary channels with angled ribs than the rotating channels with ribs. In both stationary and rotating channels, the influence of the entrance geometry on the heat transfer is more apparent in the smooth channels than in the ribbed channels.


2002 ◽  
Vol 124 (4) ◽  
pp. 617-625 ◽  
Author(s):  
Todd S. Griffith ◽  
Luai Al-Hadhrami ◽  
Je-Chin Han

An investigation into determining the effect of rotation on heat transfer in a rib-roughened rectangular channel with aspect ratio of 4:1 is detailed in this paper. A broad range of flow parameters have been selected including Reynolds number (Re=5000–40000), rotation number (Ro=0.04–0.3) and coolant to wall density ratio at the inlet Δρ/ρi=0.122. The rib turbulators, attached to the leading and trailing surface, are oriented at an angle α=45deg to the direction of flow. The effect of channel orientations of β=90 deg and 135 deg with respect to the plane of rotation is also investigated. Results show that the narrow rectangular passage exhibits a much higher heat transfer enhancement for the ribbed surface than the square and 2:1 duct previously investigated. Also, duct orientation significantly affects the leading and side surfaces, yet does not have much affect on the trailing surfaces for both smooth and ribbed surfaces. Furthermore, spanwise heat transfer distributions exist across the leading and trailing surfaces and are accentuated by the use of angled ribs. The smooth and ribbed case trailing surfaces and smooth case side surfaces exhibited a strong dependence on rotation number.


Author(s):  
Lesley M. Wright ◽  
Eungsuk Lee ◽  
Je-Chin Han

The effect of rotation on smooth narrow rectangular channels and narrow rectangular channels with pin-fins is investigated in this study. Pin-fins are commonly used in the narrow sections within the trailing edge of the turbine blade; the pin-fins act as turbulators to enhance internal cooling while providing structural support in this narrow section of the blade. The rectangular channel is oriented at 150° with respect to the plane of rotation, and the focus of the study involves narrow channels with aspect ratios of 4:1 and 8:1. The enhancement due to both conducting (copper) pin-fins and non-conducting (plexi-glass) pins is investigated. Due to the varying aspect ratio of the channel, the height-to-diameter ratio (hp/Dp) of the pins varies from two, for an aspect ratio of 4:1, to unity, for an aspect ratio of 8:1. A staggered array of pins with uniform streamwise and spanwise spacing (xp/Dp = sp/Dp = 2.0) is studied. With this array, 42 pin-fins are used, giving a projected surface density of 3.5 pins/in2 (0.543 pins/cm2), for the leading or trailing surfaces. The range of flow parameters include Reynolds number (ReDh = 5000–20000), rotation number (Ro = 0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ = 0.12). Heat transfer in a stationary pin-fin channel can be enhanced up to 3.8 times that of a smooth channel. Rotation enhances the heat transferred from the pin-fin channels 1.5 times that of the stationary pin-fin channels. Overall, rotation enhances the heat transfer from all surfaces in both the smooth and pin-fin channels. Finally, as the rotation number increases, spanwise variation increases in all channels.


Author(s):  
Yao-Hsien Liu ◽  
Lesley M. Wright ◽  
Wen-Lung Fu ◽  
Je-Chin Han

Rib turbulators are commonly used to enhance the heat transfer within internal cooling passages of advanced gas turbine blades. Many factors affect the thermal performance of a cooling channel with ribs. This study experimentally investigates the effect of rib spacing on the heat transfer enhancement, pressure penalty, and thus the overall thermal performance in both rotating and non-rotating rectangular, cooling channels. In the 1:2 rectangular channels, 45° angled ribs are placed on the leading and trailing surfaces. The pitch of the ribs varies, so rib pitch-to-height (P/e) ratios of 10, 7.5, 5, and 3 are considered. Square ribs with a 1.59 mm × 1.59 mm cross-section are used for all spacings, so the height-to-hydraulic diameter (e/Dh) ratio remains constant at 0.094. With a constant rotational speed of 550 rpm and the Reynolds number ranging from 5000 to 40000, the rotation number in turn varies from 0.2 to 0.02. Because the skewed turbulators induce secondary flow along the length of the rib, the very close rib spacing of P/e = 3, has the best thermal performance in both rotating and non-rotating channels. This close spacing yields the greatest heat transfer enhancement, while the P/e = 5 spacing has the greatest pressure penalty. In addition, the effect of rotation is more pronounced in the channel with the rib spacing of 3. As more ribs are added, the channel is approaching a smooth channel, and the strength of the rotation induced vortices increases.


2003 ◽  
Vol 125 (3) ◽  
pp. 555-563 ◽  
Author(s):  
Todd S. Griffith ◽  
Luai Al-Hadhrami ◽  
Je-Chin Han

As the world of research seeks ways of improving the efficiency of turbomachinery, attention has recently focused on a relatively new type of internal cooling channel geometry, the dimple. Preliminary investigations have shown that the dimple enhances heat transfer with minimal pressure loss. An investigation into determining the effect of rotation on heat transfer in a rectangular channel (aspect ratio=4:1) with dimples is detailed in this paper. The range of flow parameters includes Reynolds number Re=5000-40000, rotation number Ro=0.04-0.3 and inlet coolant-to-wall density ratio Δρ/ρ=0.122. Two different surface configurations are explored, including a smooth duct and dimpled duct with dimple depth-to-print diameter δ/Dp ratio of 0.3. A dimple surface density of 10.9 dimples/in2 was used for each of the principal surfaces (leading and trailing) with a total of 131 equally spaced hemispherical dimples per surface; the side surfaces are smooth. Two channel orientations of β=90 and 135 deg with respect to the plane of rotation are explored to determine channel orientation effect. Results show a definite channel orientation effect, with the trailing-edge channel enhancing heat transfer more than the orthogonal channel. Also, the dimpled channel behaves somewhat like a 45 deg angled rib channel, but with less spanwise variations in heat transfer.


Author(s):  
Todd S. Griffith ◽  
Luai Al-Hadhrami ◽  
Je-Chin Han

As the world of research seeks ways of improving the efficiency of turbomachinery, attention has recently focused on a relatively new type of internal cooling channel geometry, the dimple. Preliminary investigations have shown that the dimple enhances heat transfer with minimal pressure loss. An investigation into determining the effect of rotation on heat transfer in a rectangular channel (aspect ratio = 4:1) with dimples is detailed in this paper. The range of flow parameters includes Reynolds number (Re = 5000–40000), rotation number (Ro = 0.04–0.3) and inlet coolant-to-wall density ratio (Δρ/ρ = 0.122). Two different surface configurations are explored, including a smooth duct and dimpled duct with dimple depth-to-print diameter (δ/Dp) ratio of 0.3. A dimple surface density of 10.9 dimples/in2 was used for each of the principal surfaces (leading and trailing) with a total of 131 equally spaced hemispherical dimples per surface; the side surfaces are smooth. Two channel orientations of β = 90° and 135° with respect to the plane of rotation are explored to determine channel orientation effect. Results show a definite channel orientation effect, with the trailing-edge channel enhancing heat transfer more than the orthogonal channel. Also, the dimpled channel behaves somewhat like a 45° angled rib channel, but with less spanwise variations in heat transfer.


Author(s):  
Michael Huh ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

The focus of the current study was to determine the effects of rib spacing on heat transfer in rotating 1:4 AR channels. In the current study, heat transfer experiments were performed in a two-pass, 1:4 aspect ratio channel, with a sharp bend entrance. The channel leading and trailing walls in the first pass and second pass utilized angled rib turbulators (45° to the mainstream flow). The rib height-to-hydraulic diameter ratio (e/Dh) was held constant at 0.078. The channel was oriented 90° to the direction of rotation. Three rib pitch-to-rib height ratios (P/e) were studied: P/e = 2.5, 5, and 10. Each ratio was tested at five Reynolds numbers: 10K, 15K, 20K, 30K and 40K. For each Reynolds number, experiments were conducted at five rotational speeds: 0, 100, 200, 300, and 400 rpm. Results showed that the sharp bend entrance has a significant effect on the first pass heat transfer enhancement. In the second pass, the rib spacing and rotation effect are reduced. The P/e = 10 case had the highest heat transfer enhancement based on total area, whereas the P/e = 2.5 had the highest heat transfer enhancement based on the projected area. The current study has extended the range of the rotation number (Ro) and local buoyancy parameter (Box) for a ribbed 1:4 aspect ratio channel up to 0.65 and 1.5, respectively. Correlations for predicting heat transfer enhancement, due to rotation, in the ribbed (P/e = 2.5, 5, and 10) 1:4 aspect ratio channel, based on the extended range of the rotation number and buoyancy parameter, are presented in the paper.


2006 ◽  
Vol 129 (6) ◽  
pp. 685-696 ◽  
Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations with multi-block chimera grids were performed to study the three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with staggered arrays of pin-fins. The channel aspect ratio (AR) is 4:1, the pin length to diameter ratio (H∕D) is 2.0, and the pin spacing to diameter ratio is 2.0 in both the stream-wise (S1∕D) and span-wise (S2∕D) directions. A total of six calculations have been performed with various combinations of rotation number, Reynolds number, and coolant-to-wall density ratio. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150deg with respect to the plane of rotation to be consistent with the configuration of the gas turbine blade. A Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, and heat transfer coefficient distributions.


2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Yao-Hsien Liu ◽  
Michael Huh ◽  
Je-Chin Han ◽  
Sanjay Chopra

This paper experimentally investigated the rotational effects on heat transfer in a two-pass rectangular channel (AR=1:4), which is applicable to the channel near the leading edge of the gas turbine blade. The test channel has radially outward flow in the first passage through a redirected sharp-bend entrance and radially inward flow in the second passage after a 180deg sharp turn. In the first passage, rotation effects on heat transfer are reduced by the redirected sharp-bend entrance. In the second passage, under rotating conditions, both leading and trailing surfaces experienced heat transfer enhancements above the stationary case. Rotation greatly increased heat transfer enhancement in the tip region up to a maximum Nu ratio (Nu∕Nus) of 2.4. The objective of the current study is to perform an extended parametric study of the low rotation number (0–0.3) and low buoyancy parameter (0–0.2) achieved previously. By varying the Reynolds numbers (10,000–40,000), the rotational speeds (0–400rpm), and the density ratios (inlet density ratio=0.10–0.16), the increased range of the rotation number and buoyancy parameter reached in this study are 0–0.67 and 0–2.0, respectively. The higher rotation number and buoyancy parameter have been correlated very well to predict the rotational heat transfer in the two-pass, 1:4 aspect ratio flow channel.


Author(s):  
Michael Huh ◽  
Jiang Lei ◽  
Yao-Hsien Liu ◽  
Je-Chin Han

This paper experimentally investigated the rotational effects on heat transfer in a smooth two-pass rectangular channel (AR=2:1), which is applicable to the cooling passages in the mid portion of the gas turbine blade. The test channel has radially outward flow in the first passage and radially inward flow in the second passage after a 180° sharp turn. In the first passage, the flow is developing and heat transfer is increased compared to the fully developed case. Rotation slightly reduces the heat transfer on the leading surface and increases heat transfer on the trailing surface in the first pass. Heat transfer is highly increased by rotation in the turn portion of the first pass on both leading and trailing surfaces. Rotation increased heat transfer enhancement in the tip region up to a maximum Nu ratio (Nu/Nus) of 1.83. In the second passage, under rotating conditions, the leading surface experienced heat transfer enhancements above the stationary case while the trailing surface decreased. The current study has more than 4 times the range of the rotation number previously achieved for the 2:1 aspect ratio channel. The increased range of the rotation number and buoyancy parameter reached in this study are 0–0.45 and 0–0.8, respectively. The higher rotation number and buoyancy parameter have been correlated very well to predict the rotational heat transfer in the two-pass, 2:1 aspect ratio flow channel.


Sign in / Sign up

Export Citation Format

Share Document