frictional losses
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
pp. 1-11
Author(s):  
Kazem Kiani Nassab ◽  
Shui Zuan Ting ◽  
Sompop Buapha ◽  
Nurfitrah MatNoh ◽  
Mohammad Naghi Hemmati

Summary Kick tolerance (KT) calculation is essential for a cost-effective well design and safe drilling operations. While most exploration and production operators have a similar definition of KT, the calculation is not consistent because of different assumptions that are made and the computational power of KT calculators. Dynamic multiphase drilling simulators usually provide KT estimates with a minimum number of assumptions. They are much more accessible nowadays for use in predicting the behavior of multiphase flow in drilling and well control operations. However, as far as we observed, the simulation services are mainly used for complex and marginal wells in which low KT may impose additional casing strings, unconventional costly drilling practices, or a high risk of major well control events. Thus, companies often use simplified steady-state models for relatively uncomplicated wells through their own KT calculation worksheets. This practice is usually justified by the misconception that simplified models are always conservative and give less KT than actual conditions. In contrast, some simplifications may lead to higher operational risks due to an overestimated KT, depending on well conditions and parameters. The primary objective of this work was to perform a quality assurance/quality control on KT calculation practices in Company P. Later on, based on our findings, we determined some solutions to improve accuracy in the simplified KT worksheets commonly used by engineers across the company. This became a driver for generating a new KT worksheet (Company Model), in particular for situations in which engineers do not have access to a kick simulator. However, it should not mislead readers about the requirements of the simulator for complex and low-KTwells. Quality assurance/quality control and subsequent investigations found that there are some important criteria and parameters that affect KT calculations, but they are missing in many simplified models or ignored by engineers because they are unaware of or lack adequate references. After reviewing relevant academic literature, common practices and assessing several off-the-shelf software programs, we generated a computer program using Visual Basic for applications to address KT sensitivity to different parameters in steady-state conditions. The newly developed program is based on a single gas bubble model that applies the effect of annular frictional losses, influx temperature, gas compressibility factor, well trajectory, and bottomhole assembly (BHA). Moreover, the program differentiates between swabbing and underbalanced conditions. A logical test is applied to determine the type of kick before computing the relevant influx volume. This kick classification concept is ignored in many KT models; this is a common mistake that leads to misleading results. The annular pressure loss (APL) parameter is sometimes assumed to be zero in KT spreadsheets, while as an additional stress load on the wellbore, it affects the kick budget and must be considered.


2021 ◽  
Author(s):  
Dipesh Maharjan ◽  
Shaheen Shah ◽  
Stephen Butt ◽  
Abdelsalam Abugarara
Keyword(s):  

Friction ◽  
2020 ◽  
Author(s):  
Florian König ◽  
Christopher Sous ◽  
Georg Jacobs

AbstractWith the increased use of automotive engine start-stop systems, the numerical prediction and reduction of frictional losses in sliding bearings during starting and stopping procedures has become an important issue. In engineering practice, numerical simulations of sliding bearings in automotive engines are performed with statistical asperity contact models with empirical values for the necessary surface parameters. The aim of this study is to elucidate the applicability of these approaches for the prediction of friction in sliding bearings subjected to start-stop operation. For this purpose, the friction performance of sliding bearings was investigated in experiments on a test rig and in transient mixed elasto-hydrodynamic simulations in a multi-body simulation environment (mixed-EHL/MBS). In mixed-EHL/MBS, the extended Reynold’s equation with flow factors according to Patir and Cheng has been combined on the one hand with the statistical asperity contact model according to Greenwood and Tripp and on the other hand with the deterministic asperity contact model according to Herbst. The detailed comparison of simulation and experimental results clarifies that the application of statistical asperity contact models with empirical values of the necessary inputs leads to large deviations between experiment and simulation. The actual distribution and position of surface roughness, as used in deterministic contact modelling, is necessary for a reliable prediction of the frictional losses in sliding bearings during start-stop operation.


Friction ◽  
2020 ◽  
Author(s):  
Siti Hartini Hamdan ◽  
Chiew Tin Lee ◽  
Mei Bao Lee ◽  
William Woei Fong Chong ◽  
Cheng Tung Chong ◽  
...  

AbstractIn biodiesel-fueled compression-ignition (CI) engines, dilution by unburned biodiesel has been found to have adverse effects on the boundary lubrication properties of additives in fully formulated engine lubricants. Such dilution of engine lubricants could be even more pronounced for CI engines running on higher blend concentrations of biodiesel. Given the nanoscopic nature of the interaction, this study seeks to determine the nano-tribological properties of an engine lubricant additive (e.g., zinc dialkyldithiophosphate (ZDDP)) when diluted with a fatty acid methyl ester (e.g., methyl oleate). Using lateral force microscopy (LFM) together with a fluid imaging technique, the lowest nanoscopic friction forces and coefficient of friction values (0.068–0.085) were measured for ZDDP when diluted with 70 vol% of methyl oleate. These values are also observed to be lower than those measured for neat ZDDP and neat methyl oleate, respectively, under similar conditions. Subsequently, interpreting the data with the Eyring thermal activation energy approach, it could then be elucidated that the lower frictional losses observed for the contact lubricated with this volumetric mixture are a result of the lower potential energy barrier and activation energy required to initiate sliding. These energy values are approximated to be 2.6% and 28.9% (respectively) lower than that of the contact lubricated with neat ZDDP. It was also found that the mixture, at this volumetric concentration, possesses the highest possible pressure activation energy (load-carrying capacity) along with the lowest possible shear activation energy (shearing), potentially indicating optimum tribological conditions for boundary lubrication. Thus, the findings of this study suggest that an optimum concentration threshold exists in which a synergistic nano-tribological interaction between additives and fatty acid methyl esters can be attained, potentially reducing boundary frictional losses of lubricated conjunctions. Such findings could prove to be essential in effectively formulating synergistic additive concentrations for engine lubricants used in biodiesel-fueled CI engines.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Avinash Kumar Agarwal ◽  
Deepak Agarwal

Abstract This study investigated the use of biodiesel (B100) and baseline diesel in two identical unmodified vehicles to realistically assess different aspects of biodiesel's compatibility with modern common rail direct injection (CRDI) fuel injection equipment (FIE) and evaluate biodiesel's long-term durability/compatibility with engine components. Two identical vehicles were fueled with biodiesel (B100) and baseline mineral diesel for 30,000 km field-trials on highway under identical operating conditions. Exhaustive experimental results from this series of tests are divided into four segments. The fourth and the last paper of this series compares the effects of long-term usage of biodiesel on piston deposits and FIE components compared to baseline mineral diesel. A key challenge for improving engine performance and fuel economy is the reduction of frictional losses, primarily at the piston ring–liner interface, which accounts for majority of frictional losses. Piston rating was done for the two vehicles after the conclusion of field-trials and it revealed that rating of different piston sections was ∼5–15% superior in case of biodiesel-fueled vehicle compared to that of diesel-fueled vehicle. Performance of FIE components such as fuel filter, fuel injectors, and fuel pump was assessed after the conclusion of field-trials. Pressure drop at different fuel flow-rates across the fuel filter was measured for assessing the fuel filter blockage. Pressure drop across biodiesel filter was ∼30% higher than diesel filter after 10,000 km usage but almost twice after 15,000 km usage. These experimental results indicated that some additional technical measures should be taken by automotive manufacturers to offset these technical challenges before biodiesel is adapted on a large-scale in modern CRDI vehicles.


2020 ◽  
Author(s):  
Dipesh Maharjan ◽  
Md. Shaheen Shah ◽  
Abdelsalam Abugharara ◽  
Stephen Butt

Author(s):  
Dipesh Maharjan ◽  
Shaheen Shah ◽  
Abdelsalam Abugharara ◽  
Stephen Butt

Abstract The use of Belleville springs has been proven to be beneficial in tackling the problems related to elastic interaction, creep, differential thermal expansion or in the isolation of seismic vibrations in bolted joints. Because of its high and easily variable spring rates, the use of these springs can also be observed in passive vibration assisted rotary drilling (VARD) tools. Because of relative movement of spring with respect to supporting surfaces and the mating spring surfaces, frictional losses in the spring take place during each compression and relaxation cycle leading to a slightly different load-deflection curve from what has been defined in the literature. The geometry of the spring combined with different stacking configurations complicate the study of frictional losses in these kinds of springs. This work presents a new method to calculate the displacement of different points of Belleville springs during its loading and unloading using geometrical interpolation method. The results of spring displacement are then used to develop a model to calculate frictional load as a function of spring deflection, which is used to analyse load-deflection curves of springs with different dimensional and frictional parameters. The developed methodology is used to plot and understand characteristics curves of four different kind of Belleville springs; High Load, Standard, Force Limiting and Force Adjusting Belleville springs by plotting the graphs for different free-height to thickness and diameter ratios. In the later section of the paper, the proposed methodology has been used to visualize the load-deflection characteristics of Belleville springs used in the p-VARD tool of the Large Drilling Simulator, one of the state-of-the-art drilling simulators at Memorial University of Newfoundland. Results show that understanding of the characteristic curves of different spring configuration helps to plan to drill with desired WOB using a p-VARD tool.


Author(s):  
Xinye Zhang ◽  
Davide Ziviani ◽  
James E Braun ◽  
Eckhard A Groll

Recently, linear compressor technology has gained increased attention in vapor compression systems due to its compactness and lower frictional losses compared with the conventional reciprocating compressors. Since the absence of the crank-mechanism eliminates the rotation and reduces the side loads on the piston centered inside the cylinder, it is possible to operate the linear compressors without oil lubrication. A number of advantages can be obtained in terms of the refrigerant compatibility, operation conditions and the system cost. In order to enable oil-free operation, while minimizing frictional losses and leakage flow between the piston and the cylinder wall, a gas bearing approach is applied. Little work was found in the open literature related to the numerical analysis of gas bearings coupled with a comprehensive dynamic linear compressor model. This paper presents a 1-D gas bearing model based on a Finite Volume Method (FVM) applied to a linear compressor. The dynamic characteristics of the gas bearings on the gas film pressure field are analyzed using the model. When integrated together with a comprehensive dynamic linear compressor model, it is possible to predict leakage and frictional losses within the compressor as well as the overall performance.


Sign in / Sign up

Export Citation Format

Share Document