Design and Evaluation of the AIMS Combustor

Author(s):  
Andrei Colibaba-Evulet ◽  
Michael J. Bowman ◽  
Anthony R. Brand

This paper describes a reduced NOx and CO, partially premixed flame combustor that has been developed for the 175 kW Advanced Integrated Microturbine System (AIMS) recuperated cycle gas micro-turbine. The AIMS turbine is equipped with a recuperated silo combustor. The new, reduced emissions combustor retains key features of the conventional Dry Low NOx (DLN) combustors; the differences are the arrangement of the premixers, the novel head-end assembly design, and the liner cooling and dilution features. The combustion system was designed and tested at the GE Global Research facilities in Niskayuna, NY and leverages technology developed by GE Power Systems (GEPS) and GE Aircraft Engines (GEAE). Laboratory tests show that when firing with natural gas, without water or steam injection, NOx and CO emissions from the new combustor are in single digits at full-speed, full-load conditions. CO emissions show a strong pressure effect, increasing at base load (when compared to similar conditions in commercial combustors running at higher pressures). The standard combustor on the AIMS gas turbine is a reversed flow cylindrical can. An array of 4 fuel nozzles is located at the head end of the can and produces a swirl stabilized premixed flame. The liner contains an array of cooling and dilution holes that provide the air needed to dilute the burned gas to the desired turbine inlet temperature.

Author(s):  
Robert Steele ◽  
Peter Baldwin ◽  
James Kesseli

The following analysis is presented to serve as a preliminary design guide for micro turbine engine designers to consider the potential advantages of incorporating the Rampressor into their recuperated engine designs. It is shown that the increase in compressor efficiency and the shift in optimum pressure will increase the efficiency of the engine and lower the recuperator inlet temperature and specific cost. This also provides the opportunity to increase the turbine inlet temperature and specific power without incorporating more costly air-cooled metal or ceramic components into the turbine design. Ramgen Power Systems, Inc. (RPS) is developing a family of high performance supersonic compressor designs that combine many of the aspects of shock compression systems, commonly used in supersonic flight inlet design, with turbo-machinery design practices employed in conventional axial and centrifugal compressor design. The result is a high efficiency compressor that is capable of single stage pressure ratios in excess of those available in existing axial or centrifugal compressor designs. This technology provides a tremendous opportunity for replacement and/or de-staging of multi-stage centrifugal or axial compressors in gas turbines for greater efficiency, less cost, fewer parts, lower weight, and reduced footprint. A conceptual single-stage supersonic compressor has been defined for integration with a micro turbine in the 200 to 500 kWe class. This configuration offers the potential to achieve the DOE Advanced Micro Turbine Systems goals of greater than 40% LHV electric efficiency and $500 per kWe package selling price.


AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1190-1199
Author(s):  
Suresh K. Aggarwal ◽  
Ishwar K. Puri

Author(s):  
André Perpignan V. de Campos ◽  
Fernando L. Sacomano Filho ◽  
Guenther C. Krieger Filho

Gas turbines are reliable energy conversion systems since they are able to operate with variable fuels and independently from seasonal natural changes. Within that reality, micro gas turbines have been increasing the importance of its usage on the onsite generation. Comparatively, less research has been done, leaving more room for improvements in this class of gas turbines. Focusing on the study of a flexible micro turbine set, this work is part of the development of a low cost electric generation micro turbine, which is capable of burning natural gas, LPG and ethanol. It is composed of an originally automotive turbocompressor, a combustion chamber specifically designed for this application, as well as a single stage axial power turbine. The combustion chamber is a reversed flow type and has a swirl stabilized combustor. This paper is dedicated to the diagnosis of the natural gas combustion in this chamber using computational fluid dynamics techniques compared to measured experimental data of temperature inside the combustion chamber. The study emphasizes the near inner wall temperature, turbine inlet temperature and dilution holes effectiveness. The calculation was conducted with the Reynolds Stress turbulence model coupled with the conventional β-PDF equilibrium along with mixture fraction transport combustion model. Thermal radiation was also considered. Reasonable agreement between experimental data and computational simulations was achieved, providing confidence on the phenomena observed on the simulations, which enabled the design improvement suggestions and analysis included in this work.


Author(s):  
Ramgopal Sampath ◽  
S. R. Chakravarthy

The thermoacoustic oscillations of a partially premixed flame stabilized in a backward facing step combustor are studied at a constant equivalence ratio in long and short combustor configurations corresponding to with and without acoustic feedback respectively. We perform simultaneous time-resolved particle image velocimetry (TR-PIV) and chemiluminescence for selected flow conditions based on the acoustic characterization in the long combustor. The acoustic characterization shows a transition in the dominant pressure amplitudes from low to high magnitudes with an increase in the inlet flow Reynolds number. This is accompanied by a shift in the dominant frequencies. For the intermittent pressure oscillations in the long combustor, the wavelet analysis indicates a switch between the acoustic and vortex modes with silent zones of relatively low-pressure amplitudes. The short combustor configuration indicates the presence of the vortex shedding frequency and an additional band comprising the Kelvin Helmholtz mode. Next, we apply the method of finite-time Lyapunov exponent (FTLE) to the time-resolved velocity fields to extract features of the Lagrangian coherent structures (LCS) of the flow. In the long combustor post transition with the time instants with dominant acoustic mode, a large-scale modulation of the FTLE boundaries over one cycle of pressure oscillation is evident. Further, the FTLEs and the flame boundaries align each other for all phases of the pressure oscillation. In the short combustor, the FTLEs indicate the presence of small wavelength waviness that overrides the large-scale vortex structure, which corresponds to the vortex shedding mode. This behaviour contrasts with the premixed flame in the short combustor reported earlier in which such large scales were found to be seldom present. The presence of the large-scale structures even in the absence of acoustic feedback in a partially premixed flame signifies its inherent unstable nature leading to large pressure amplitudes during acoustic feedback. Lastly, the FTLE boundaries provide the frequency information of the identified coherent structure and also acts as the surrogate flame boundaries that are estimated from just the velocity fields.


Author(s):  
C. P. Lea˜o ◽  
S. F. C. F. Teixeira ◽  
A. M. Silva ◽  
M. L. Nunes ◽  
L. A. S. B. Martins

In recent years, gas-turbine engines have undergone major improvements both in efficiency and cost reductions. Several inexpensive models are available in the range of 30 to 250 kWe, with electrical efficiencies already approaching 30%, due to the use of a basic air-compressor associated to an internal air pre-heater. Gas-turbine engines offer significant advantages over Diesel or IC engines, particularly when Natural Gas (NG) is used as fuel. With the current market trends toward Distributed Generation (DG) and the increased substitution of boilers by NG-fuelled cogeneration installations for CO2 emissions reduction, small-scale gas turbine units can be the ideal solution for energy systems located in urban areas. A numerical optimization method was applied to a small-scale unit delivering 100 kW of power and 0.86 kg/s of water, heated from 318 to 353K. In this academic study, the unit is based on a micro gas-turbine and includes an internal pre-heater, typical of these low pressure-ratio turbines, and an external heat recovery system. The problem was formulated as a non-linear optimisation model with the minimisation of costs subject to the physical and thermodynamic constraints. Despite difficulties in obtaining data for some of the components cost-equations, the preliminary results indicate that the optimal compressor pressure ratio is about half of the usual values found in large installations, but higher than those of the currently available micro-turbine models, while the turbine inlet temperature remains virtually unchanged.


Author(s):  
Salvatore Matarazzo ◽  
Hannes Laget ◽  
Evert Vanderhaegen ◽  
Jim B. W. Kok

The phenomenon of combustion dynamics (CD) is one of the most important operational challenges facing the gas turbine (GT) industry today. The Limousine project, a Marie Curie Initial Training network funded by the European Commission, focuses on the understanding of the limit cycle behavior of unstable pressure oscillations in gas turbines, and on the resulting mechanical vibrations and materials fatigue. In the framework of this project, a full transient CFD analysis for a Dry Low NOx combustor in a heavy duty gas turbine has been performed. The goal is to gain insight on the thermo-acoustic instability development mechanisms and limit cycle oscillations. The possibility to use numerical codes for complex industrial cases involving fuel staging, fluid-structure interaction, fuel quality variation and flexible operations has been also addressed. The unsteady U-RANS approach used to describe the high-swirled lean partially premixed flame is presented and the results on the flow characteristics as vortex core generation, vortex shedding, flame pulsation are commented on with respect to monitored parameters during operations of the GT units at Electrabel/GDF-SUEZ sites. The time domain pressure oscillations show limit cycle behavior. By means of Fourier analysis, the coupling frequencies caused by the thermo-acoustic feedback between the acoustic resonances of the chamber and the flame heat release has been detected. The possibility to reduce the computational domain to speed up computations, as done in other works in literature, has been investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Changchun Cai ◽  
Ping Ju ◽  
Yuqing Jin

The frequency characteristic of electric equipment should be considered in the digital simulation of power systems. The traditional asynchronous machine third-order transient model excludes not only the stator transient but also the frequency characteristics, thus decreasing the application sphere of the model and resulting in a large error under some special conditions. Based on the physical equivalent circuit and Park model for asynchronous machines, this study proposes a novel asynchronous third-order transient machine model with consideration of the frequency characteristic. In the new definitions of variables, the voltages behind the reactance are redefined as the linear equation of flux linkage. In this way, the rotor voltage equation is not associated with the derivative terms of frequency. However, the derivative terms of frequency should not always be ignored in the application of the traditional third-order transient model. Compared with the traditional third-order transient model, the novel simplified third-order transient model with consideration of the frequency characteristic is more accurate without increasing the order and complexity. Simulation results show that the novel third-order transient model for the asynchronous machine is suitable and effective and is more accurate than the widely used traditional simplified third-order transient model under some special conditions with drastic frequency fluctuations.


2018 ◽  
Vol 63 (19) ◽  
pp. 1260-1266 ◽  
Author(s):  
Zaigang Liu ◽  
Wenjun Kong ◽  
Jean-Louis Consalvi ◽  
Wenhu Han

Sign in / Sign up

Export Citation Format

Share Document