Centrifugal Rotor Tri-Hub Burst For Containment System Validation

Author(s):  
B. Manavi

The following paper outlines a methodology for accurately predicting the burst of a centrifugal rotor, for the purpose of certifying the tri-hub containment capability of an Auxiliary Power Unit gas turbine engine. The tri hub burst is achieved by introducing three equally spaced slots into a centrifugal rotor. Using 2D and 3D finite element analysis, the slot geometry was optimized to ensure burst of the centrifugal rotor at the desired speed, through spin pit testing, and to account for thermal and centrifugal growth for operation in an engine with proper tip clearances. In order to validate the versatility of this methodology, two centrifugal rotor geometries with different material properties (Ti6Al4V and Ti6Al2Sn4Zr6Mo) and operating conditions were analyzed. The analytical predictions were confirmed with isothermal spit pit tests using temperatures that approximate the bulk average temperature in the high stressed bore for an un-slotted centrifugal rotor. The results of spin pit tests were found to be within 0.4% of predicted values. Burst tests were subsequently conducted on a gas generator rig and a full engine test, where results were found to be within 2% of predicted values.

Author(s):  
Karsten Knobloch ◽  
Lars Enghardt ◽  
Friedrich Bake

For a GTCP36-28 auxiliary power unit (APU), a set of mufflers has been designed and tested for some representative operating conditions. The first muffler design uses cavities of different sizes in conjunction with a bias flow for efficient broadband sound absorption. The second design — also expected to perform well over a large frequency range — makes use of a variable perforation and some porous absorber material. The acoustic damping performance of the mufflers was assessed using a downstream section of dedicated microphone probes. Individual spectra and circumferential averages have been computed and are used for a comparison to a hard-walled duct section of the same length. Results show a reasonable broadband absorption for most configurations. For one operating point, significant differences were found while comparing the performance of the cavity muffler with and without bias flow. The results suggest, that a small amount of air — less than initially expected — is sufficient to obtain the desired noise reduction.


2020 ◽  
pp. 5-13
Author(s):  
Grigory Popov ◽  
◽  
Vasily Zubanov ◽  
Valeriy Matveev ◽  
Oleg Baturin ◽  
...  

The presented work provides a detailed description of the method developed by the authors for coordinating the working process of the main elements of the starting system for a modern gas turbine engine for a civil aviation aircraft: an auxiliary power unit (APU) and an air turbine – starter. This technique was developed in the course of solving the practical problem of selecting the existing APU and air turbine for a newly created engine. The need to develop this method is due to the lack of recommendations on the coordination of the elements of the starting system in the available literature. The method is based on combining the characteristics of the APU and the turbine, reduced to a single coordinate system. The intersection of the characteristic’s lines corresponding to the same conditions indicates the possibility of joint operation of the specified elements. The lack of intersection indicates the impossibility of joint functioning. The calculation also takes into account losses in the air supply lines to the turbine. The use of the developed method makes it possible to assess the possibility of joint operation of the APU and the air turbine in any operating mode. In addition to checking the possibility of functioning, as a result of the calculation, specific parameters of the working process at the operating point are determined, which are then used as initial data in calculating the elements of the starting system, for example, determining the parameters of the turbine, which in turn allow providing initial information for calculating the starting time or the possibility of functioning of the starting system GTE according to strength and other criteria. The algorithm for calculating the start-up time of the gas turbine engine was also developed by the authors and implemented in the form of an original computer program. Keywords: gas turbine engine start-up, GTE starting system, air turbine, methodology, joint work, auxiliary power unit, power, start-up time, characteristics matching, coordination, operational characteristics, computer program.


Author(s):  
C. Rodgers ◽  
J. Zeno ◽  
E. A. Drury ◽  
A. Karchon

Auxiliary power is often provided on combat vehicles in the U.S. Army for battery charging, operation of auxiliary vehicle equipment when the main engine is not running, or to provide assistance in starting the main engine in extreme cold weather conditions. The use of a gas turbine for these applications is particularly attractive, due to its small size and lightweight. In November 1978, the U.S. Army Tank-Automotive Research and Development Command, Warren, MI awarded a contract to the Turbomach Division of Solar Turbines International, San Diego, CA, for the development of a 10 kW 28 vdc gas turbine powered auxiliary power unit (APU) for installation in the XM1 main battle tank. This paper describes the general features of the Solar Turbomach T-20G-8 Auxiliary Power Unit, a single-shaft gas turbine driven generator set which has been developed under this contract. This APU is one of the family of Gemini powered APUs and is a derivative of the U.S. Army 10 kW gas turbine engine-driven, 60 and 400 Hz generator sets developed by Solar. The electrical components were newly developed for this particular application. Currently, the APU is in qualification testing both in the laboratory and in the XM1 main battle tank.


2014 ◽  
Vol 533 ◽  
pp. 13-16
Author(s):  
Yu Yu Zuo

As aircraft became more complex a need was created for a power source to operate the aircraft systems on the ground without the necessity for operating the aircrafts main engines. This became the task of the Auxiliary Power Unit (APU). The use of an APU on an aircraft also meant that the aircraft was not dependant on ground support equipment at an airfield. It can provide the necessary power for operation of the aircrafts Electrical, Hydraulic and Pneumatic systems. It should come as no surprise that the power unit selected to do this task is a Gas Turbine Engine.


1995 ◽  
Author(s):  
Melvin Ryder, O, Jr ◽  
Brian Johnson ◽  
Tibor Farkas ◽  
Brad Irlbeck

2015 ◽  
Vol 46 (4) ◽  
pp. 365-393 ◽  
Author(s):  
Evgenii Petrovich Bykov ◽  
Egor Vyacheslavovich Kazhan ◽  
Vladimir Fedorovich Tretyakov

Author(s):  
H. S. Yang ◽  
M. S. Rho ◽  
H. Y. Park ◽  
J. H. Choi ◽  
Y. B. Cha ◽  
...  

This paper shows that high-speed starter/generator system is more efficient for gas turbine engine for mobile auxiliary power unit. The system is rated at 25kW, 325Vdc, 60krpm. The system also provides 4kw to start the 100kW engine. The system consists of a high speed machine directly coupled to the gas turbine engine, a power control unit (PCU), and an electronics controller. The PCU is consist of boost converter that boost from 24V (Battery of Vehicle) to 235V for driving high-speed motor, inverter drive PMSM (Permanent Magnet Synchronous Motor), and buck converter drop the voltage to 28V. For PMSM driving the system applied SVPWM (Space Vector Pulse Width Modulation), sensorless algorithm. And then, to supply optimized power, “Constant Power Control Algorithm” is applied. For the system development, electromagnetic analysis, structure analysis, rotor dynamic analysis, and heat transfer analysis are done. After manufacturing, we have tested the system many times to produce verified performance.


Author(s):  
Joseph Shibu K ◽  
K Shankar ◽  
Ch Kanna Babu ◽  
Girish K Degaonkar

A self-updating Rayleigh damping model and frequency-dependent bearing-pedestal model for multi-objective optimisation is presented through this paper and is applied for a small turbine engine rotor system for aircraft application. This engine is used as an auxiliary power unit on aircraft. The Rayleigh damping model and frequency-dependent bearing pedestal model are verified by carrying out experiments on this auxiliary power unit rotor system. The novel self-updating feature calculates the Rayleigh damping coefficients and frequency-dependent bearing-pedestal stiffness for each chromosome and modifies rotor system equation of motion for computing the objectives during multi-objective optimisation for each chromosome. This novel model is used for multi-objective optimisation of auxiliary power unit rotor system. The unbalance response and weight are minimised subjected to critical speed constraint. Controlled elitist genetic algorithm is used for the optimisation resulting in Pareto optimal solutions and the acceptable solution is identified as the solution close to Utopia point. The results are compared with the constant Rayleigh damping model. The new model has produced an accurate optimum solution superior to constant Rayleigh damping model.


Sign in / Sign up

Export Citation Format

Share Document