scholarly journals Gemini T-20G-8 XM1 Tank APU

Author(s):  
C. Rodgers ◽  
J. Zeno ◽  
E. A. Drury ◽  
A. Karchon

Auxiliary power is often provided on combat vehicles in the U.S. Army for battery charging, operation of auxiliary vehicle equipment when the main engine is not running, or to provide assistance in starting the main engine in extreme cold weather conditions. The use of a gas turbine for these applications is particularly attractive, due to its small size and lightweight. In November 1978, the U.S. Army Tank-Automotive Research and Development Command, Warren, MI awarded a contract to the Turbomach Division of Solar Turbines International, San Diego, CA, for the development of a 10 kW 28 vdc gas turbine powered auxiliary power unit (APU) for installation in the XM1 main battle tank. This paper describes the general features of the Solar Turbomach T-20G-8 Auxiliary Power Unit, a single-shaft gas turbine driven generator set which has been developed under this contract. This APU is one of the family of Gemini powered APUs and is a derivative of the U.S. Army 10 kW gas turbine engine-driven, 60 and 400 Hz generator sets developed by Solar. The electrical components were newly developed for this particular application. Currently, the APU is in qualification testing both in the laboratory and in the XM1 main battle tank.

Author(s):  
Adam Dick ◽  
Peter Diamond

This paper examines the analysis of re-designing the Auxiliary Power Unit (APU) bleed air spool piece used on the Landing Craft, Air Cushion (LCAC). The APU supplies bleed air for main engine (ME) starting, anti-icing of the propeller shrouds during cold weather conditions and anti-icing of the filtration system that supplies both ME compartment cooling air and the APU gas turbine combustion air. An air-blast cockpit windshield cleaning system is also powered by APU bleed air. A spool piece is a venturi whose function is to limit a specific amount of airflow as it passes through a system. The current spool piece venturi dimensions allow an excess in APU bleed air to on-craft components, resulting in an exhaust gas temperature (EGT) over-temp in the gas turbine power producer. Such operating conditions occur during cold weather testing, when port and starboard propeller shroud anti-ice systems and APU combustion air/main engine compartment cooling air anti-ice systems are operating. In order to rectify this issue, a model analysis was created, determining the proper dimension of the spool piece venturi. Because spool piece venturies have been implemented fleet wide, it was a priority to reduce fabrication expenses of new materials. To best achieve this, the analysis will determine the size of a plain venturi that can be installed within the existing spool pieces. Referring to engine specifications, APU bleed air was limited to a certain flow rate. However, anti-ice components also required a specific mass flow rate in order to operate properly. It is within these boundaries that the proper diameter of the venturi was determined. This issue further expands upon the analysis of thermal testing, inlet and outlet pressures and the mass flow rate of the new venturi dimension.


2020 ◽  
pp. 5-13
Author(s):  
Grigory Popov ◽  
◽  
Vasily Zubanov ◽  
Valeriy Matveev ◽  
Oleg Baturin ◽  
...  

The presented work provides a detailed description of the method developed by the authors for coordinating the working process of the main elements of the starting system for a modern gas turbine engine for a civil aviation aircraft: an auxiliary power unit (APU) and an air turbine – starter. This technique was developed in the course of solving the practical problem of selecting the existing APU and air turbine for a newly created engine. The need to develop this method is due to the lack of recommendations on the coordination of the elements of the starting system in the available literature. The method is based on combining the characteristics of the APU and the turbine, reduced to a single coordinate system. The intersection of the characteristic’s lines corresponding to the same conditions indicates the possibility of joint operation of the specified elements. The lack of intersection indicates the impossibility of joint functioning. The calculation also takes into account losses in the air supply lines to the turbine. The use of the developed method makes it possible to assess the possibility of joint operation of the APU and the air turbine in any operating mode. In addition to checking the possibility of functioning, as a result of the calculation, specific parameters of the working process at the operating point are determined, which are then used as initial data in calculating the elements of the starting system, for example, determining the parameters of the turbine, which in turn allow providing initial information for calculating the starting time or the possibility of functioning of the starting system GTE according to strength and other criteria. The algorithm for calculating the start-up time of the gas turbine engine was also developed by the authors and implemented in the form of an original computer program. Keywords: gas turbine engine start-up, GTE starting system, air turbine, methodology, joint work, auxiliary power unit, power, start-up time, characteristics matching, coordination, operational characteristics, computer program.


2014 ◽  
Vol 533 ◽  
pp. 13-16
Author(s):  
Yu Yu Zuo

As aircraft became more complex a need was created for a power source to operate the aircraft systems on the ground without the necessity for operating the aircrafts main engines. This became the task of the Auxiliary Power Unit (APU). The use of an APU on an aircraft also meant that the aircraft was not dependant on ground support equipment at an airfield. It can provide the necessary power for operation of the aircrafts Electrical, Hydraulic and Pneumatic systems. It should come as no surprise that the power unit selected to do this task is a Gas Turbine Engine.


Author(s):  
Grigorii Popov ◽  
Vasilii Zubanov ◽  
Oleg Baturin ◽  
Daria Kolmakova ◽  
Yulia Novikova ◽  
...  

Abstract The authors of the paper have developed and successfully tested a method for optimizing the air starter of a gas turbine engine, considering its joint operation with the auxiliary power unit. As a result, a way to increase the efficiency of the existing launch system during the modernization of the gas turbine engine was found. Hereinafter, start efficiency is a reduction in engine start-up time and possibility of the engine start under all operating conditions. When designing and modernizing a gas turbine engine, the greatest attention is usually paid to its main components: compressor, combustion chamber, turbine, etc. Huge efforts are spent to improve the parameters of these components, as evidenced by the huge number of publications. However, there are several “secondary” elements in the gas turbine engine. One of them is the launch system with the turbo starter, which is a small turbine driven by compressed air from the auxiliary power unit (APU). It is used to spin the engine rotor at the startup. Even though this element is small compared to the engine and it works only for a short time, the operation of a gas turbine engine is impossible without it. This system must start the engine in a short time (for military aircraft in a very short time) at any operating conditions. The presented work appeared while verifying the possibility of using existing turbo starter for a modernized engine using modern APU fulfilling all existing operational limitations. To solve this problem, a methodology was developed for determining the possibility of joint operation of the starter turbine and the APU, and for the calculation of the parameters of the air system there. The essence of the methodology is that a characteristic of the form “flow parameter is the function of the pressure drop across the turbine” is determined for an air turbine of a turbo starter based on CFD modeling in the NUMECA program. The calculated characteristic of the turbine was obtained considering the correction factors found during verification. The calculated characteristics is in a good agreement with the experimental data. The obtained characteristic was combined with the characteristic of the APU using the same coordinates for different flight conditions. The intersection points of the characteristics of the turbine and the APU corresponded to the operating points of the launch system. Non-intersection of the characteristics of the APU and the turbine signals the impossibility of the launch system operation at this mode. At the found operating points, the main parameters of the launch system were determined using CFD modeling. In particular, the torque values on the output shaft were checked. If it exceeded the limit value under the conditions of structural strength, work in this mode was considered as impossible. The torque value was also used to calculate the engine start time. Based on the developed methodology for determining the possibility of joint operation of the launch system, an optimization algorithm for the turbo starter turbine was developed and implemented. Based on the developed tools, the possibility of using existing turbo starters to launch the modernized engine was analyzed. It was found that the considered variants for air turbo starters do not meet the requirements: the first variant has a long start time, and the second one provides torque above the permissible. Using the developed algorithms, the shape of the second air turbo starter blades was optimized, which provides the modernized variant for that the permissible value of the torque on the shaft is provided with minimal changes in the design and with an acceptable start time at all operating modes.


Author(s):  
Jeffrey S. Patterson

The LSD-41 Whidbey Island Class of Amphibious dock landing ships are powered by two Colt-Pielstick PC2.5V Block 16 cylinder Main Propulsion Diesel engines. These engines represent the largest diesels in the U.S. Navy. Currently, they are started without the use of a mechanical starter, by injecting 100 cfm [47.2 LPs] of 3,000 psig [206.9 barr] high pressure air, reduced to 425 psig [29.3 barr] directly into one block of eight engine cylinders. Naval Surface Warfare Center, Carderock Division (NSWCCD) was tasked to perform a proof of concept test that would demonstrate the capability of an Auxiliary Power Unit (APU) gas turbine engine to start these large, medium speed diesel engines. This paper will present the background, installation and initial testing for this proof of concept test. The background section will discuss the test philosophy, the LSD-41 Land Based Engineering Site (LBES) and initial prototype testing. The installation section will discuss the modifications made to the LBES for this test and the characteristics and specifications of the test hardware. The testing section will discuss the test plan and the test procedures. This paper will not present any results or data analysis from this proof of concept test. Test site availability and equipment procurement delays postponed the start of this test until March, 1996. Therefore, the test results will be discussed at the upcoming Turbo Exposition conference.


2021 ◽  
Author(s):  
Thomas Bronson ◽  
Rudy Dudebout ◽  
Nagaraja Rudrapatna

Abstract The aircraft Auxiliary Power Unit (APU) is required to provide power to start the main engines, conditioned air and power when there are no facilities available and, most importantly, emergency power during flight operation. Given the primary purpose of providing backup power, APUs have historically been designed to be extremely reliable while minimizing weight and fabrication cost. Since APUs are operated at airports especially during taxi operations, the emissions from the APUs contribute to local air quality. There is clearly significant regulatory and public interest in reducing emissions from all sources at airports, including from APUs. As such, there is a need to develop technologies that reduce criteria pollutants, namely oxides of nitrogen (NOx), unburned hydrocarbons (UHC), carbon monoxide (CO) and smoke (SN) from aircraft APUs. Honeywell has developed a Low-Emissions (Low-E) combustion system technology for the 131-9 and HGT750 family of APUs to provide significant reduction in pollutants for narrow-body aircraft application. This article focuses on the combustor technology and processes that have been successfully utilized in this endeavor, with an emphasis on abating NOx. This paper describes the 131-9/HGT750 APU, the requirements and challenges for small gas turbine engines, and the selected strategy of Rich-Quench-Lean (RQL) combustion. Analytical and experimental results are presented for the current generation of APU combustion systems as well as the Low-E system. The implementation of RQL aerodynamics is well understood within the aero-gas turbine engine industry, but the application of RQL technology in a configuration with tangential liquid fuel injection which is also required to meet altitude ignition at 41,000 ft is the novelty of this development. The Low-E combustion system has demonstrated more than 25% reduction in NOx (dependent on the cycle of operation) vs. the conventional 131-9 combustion system while meeting significant margins in other criteria pollutants. In addition, the Low-E combustion system achieved these successes as a “drop-in” configuration within the existing envelope, and without significantly impacting combustor/turbine durability, combustor pressure drop, or lean stability.


1989 ◽  
Vol 111 (1) ◽  
pp. 181-185
Author(s):  
M. S. Beaton

FELTMETAL® fiber metal acoustic materials function as broad band acoustic absorbers. Their acoustic energy absorbance occurs through viscous flow losses as sound waves pass through the tortuous pore structure of the material. A new FELTMETAL® fiber metal acoustic material has been designed for use in gas turbine auxiliary power unit exhaust environments without supplemental cooling. The physical and acoustic properties of FM 827 are discussed. Exposure tests were conducted under conditions that simulated auxiliary power unit operation. Weight gain and tensile strength data as a function of time of exposure at 650°C (1202°F) are reported. Fabrication of components with fiber metal acoustic materials is easily accomplished using standard roll forming and gas tungsten arc welding practices.


Author(s):  
Wissam Bou Nader ◽  
Yuan Cheng ◽  
Emmanuel Nault ◽  
Alexandre Reine ◽  
Samer Wakim ◽  
...  

Gas turbine systems are among potential energy converters to substitute the internal combustion engine as auxiliary power unit in future series hybrid electric vehicle powertrains. Fuel consumption of these auxiliary power units in the series hybrid electric vehicle strongly relies on the energy converter efficiency and power-to-weight ratio as well as on the energy management strategy deployed on-board. This paper presents a technological analysis and investigates the potential of fuel consumption savings of a series hybrid electric vehicle using different gas turbine–system thermodynamic configurations. These include a simple gas turbine, a regenerative gas turbine, an intercooler regenerative gas turbine, and an intercooler regenerative reheat gas turbine. An energetic and technological analysis is conducted to identify the systems’ efficiency and power-to-weight ratio for different operating temperatures. A series hybrid electric vehicle model is developed and the different gas turbine–system configurations are integrated as auxiliary power units. A bi-level optimization method is proposed to optimize the powertrain. It consists of coupling the non-dominated sorting genetic algorithm to the dynamic programming to minimize the fuel consumption and the number of switching ON/OFF of the auxiliary power unit, which impacts its durability. Fuel consumption simulations are performed on the worldwide-harmonized light vehicles test cycle while considering the electric and thermal comfort vehicle energetic needs. Results show that the intercooler regenerative reheat gas turbine–auxiliary power unit presents an improved fuel consumption compared with the other investigated gas turbine systems and a good potential for implementation in series hybrid electric vehicles.


1996 ◽  
Vol 118 (2) ◽  
pp. 369-374
Author(s):  
J. P. Ehrhardt ◽  
S. K. Spring

The Sundstrand Power Systems T-62T-40-7 Gas Turbine Auxiliary Power Unit (APU) was adapted from an aircraft-borne APU to a marine application on the U.S. Navy’s Landing Craft Air Cushion (LCAC). Although the LCAC APU experienced less operating time than its aircraft version, the environmental conditions that exist cause unusual wear and component failures. Component and procedural improvements have been developed to extend the reliability of the T-62T-40-7 on board the LCAC.


Sign in / Sign up

Export Citation Format

Share Document