Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers

Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There is increasing interest in design methods and performance prediction for aircraft engine turbines operating at low Reynolds numbers. In this regime, boundary layer separation may be more likely to occur in the turbine flow passages. For accurate CFD predictions of the flow, correct modeling of laminar-turbulent boundary layer transition is essential to capture the details of the flow. To investigate possible improvements in model fidelity, CFD models were created for the flow over two low pressure turbine blade designs. A new three-equation eddy-viscosity type turbulent transitional flow model originally developed by Walters and Leylek was employed for the current RANS CFD calculations. Previous studies demonstrated the ability of this model to accurately predict separation and boundary layer transition characteristics of low Reynolds number flows. The present research tested the capability of CFD with the Walters and Leylek turbulent transitional flow model to predict the boundary layer behavior and performance of two different turbine cascade configurations. Flows over the Pack-B turbine blade airfoil and the midspan section of a typical low pressure turbine (TLPT) blade were simulated over a Reynolds number range of 15,000–100,000, and predictions were compared to experimental cascade results. The turbulent transitional flow model sensitivity to turbulent flow parameters was investigated and showed a strong dependence on free-stream turbulence intensity with a second order effect of turbulent length scale. Focusing on the calculation of the total pressure loss coefficients to judge performance, the CFD simulation incorporating Walters and Leylek’s turbulent transitional flow model produced adequate prediction of the Reynolds number performance for the TLPT blade cascade geometry. Furthermore, the correct qualitative flow response to separated shear was observed for the Pack-B blade airfoil. Significant improvements in performance predictions were shown over predictions of conventional RANS turbulence models that cannot adequately model boundary layer transition.

2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There is an increasing interest in design methods and performance prediction for aircraft engine turbines operating at low Reynolds numbers. In this regime, boundary layer separation may be more likely to occur in the turbine flow passages. For accurate computational fluid dynamics (CFD) predictions of the flow, correct modeling of laminar-turbulent boundary layer transition is essential to capture the details of the flow. To investigate possible improvements in model fidelity, CFD models were created for the flow over two low pressure turbine blade designs. A new three-equation eddy-viscosity type turbulent transitional flow model, originally developed by Walters and Leylek (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202), was employed for the current Reynolds averaged Navier–Stokes (RANS) CFD calculations. Previous studies demonstrated the ability of this model to accurately predict separation and boundary layer transition characteristics of low Reynolds number flows. The present research tested the capability of CFD with the Walters and Leylek turbulent transitional flow model to predict the boundary layer behavior and performance of two different turbine cascade configurations. Flows over low pressure turbine (LPT) blade airfoils with different blade loading characteristics were simulated over a Reynolds number range of 15,000–100,000 and predictions were compared with experimental cascade results. Part I of this paper discusses the prediction methodology that was developed and its validation using a lightly loaded LPT blade airfoil design. The turbulent transitional flow model sensitivity to turbulent flow parameters was investigated and showed a strong dependence on freestream turbulence intensity with a second-order effect of turbulent length scale. Focusing on the calculation of the total pressure loss coefficients to judge performance, the CFD simulation incorporating Walters and Leylek’s turbulent transitional flow model produced adequate prediction of the Reynolds number performance for the lightly loaded LPT blade cascade geometry. Significant improvements in performance were shown over predictions of conventional RANS turbulence models. Historically, these models cannot adequately predict boundary layer transition.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There has been a need for improved prediction methods for low pressure turbine (LPT) blades operating at low Reynolds numbers. This is known to occur when LPT blades are subjugated to high altitude operations causing a decrease in the inlet Reynolds number. Boundary layer separation is more likely to be present within the flowfield of the LPT stages due to increase in the region adverse pressure gradients on the blade suction surface. Accurate CFD predictions are needed in order to improve design methods and performance prediction of LPT stages operating at low Reynolds numbers. CFD models were created for the flow over two low pressure turbine blade designs using a new turbulent transitional flow model, originally developed by Walters and Leylek (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202). Part I of this study applied Walters and Leylek’s model to a cascade CFD model of a LPT blade airfoil with a light loading level. Flows were simulated over a Reynolds number range of 15,000–100,000 and predicted the laminar-to-turbulent transitional flow behavior adequately. It showed significant improvement in performance prediction compared to conventional RANS turbulence models. Part II of this paper presents the application of the prediction methodology developed in Part I to both two-dimensional and three-dimensional cascade models of a largely separated LPT blade geometry with a high blade loading level. Comparisons were made with available experimental cascade results on the prediction of the inlet Reynolds number effect on surface static pressure distribution, suction surface boundary layer behavior, and the wake total pressure loss coefficient. The kT-kL-ω transitional flow model accuracy was judged sufficient for an understanding of the flow behavior within the flow passage, and can identify when and where a separation event occurs. This model will provide the performance prediction needed for modeling of low Reynolds number effects on more complex geometries.


Author(s):  
Barton L. Smith ◽  
Jack J. Stepan ◽  
Donald M. McEligot

The results of flow experiments performed in a cylinder array designed to mimic a VHTR Nuclear Plant lower plenum design are presented. Pressure drop and velocity field measurements were made. Based on these measurements, five regimes of behavior are identified that are found to depend on Reynolds number. It is found that the recirculation region behind the cylinders is shorter than that of half cylinders placed on the wall representing the symmetry plane. Unlike a single cylinder, the separation point is found to always be on the rear of the cylinders, even at very low Reynolds number. Boundary layer transition is found to occur at much lower Reynolds numbers than previously reported.


1991 ◽  
Vol 113 (1) ◽  
pp. 10-17 ◽  
Author(s):  
R. C. Schmidt ◽  
S. V. Patankar

An analysis and evaluation of the capability of k–ε low-Reynolds-number turbulence models to predict transition in external boundary-layer flows subject to free-stream turbulence is presented. The similarities between the near-wall cross-stream regions in a fully turbulent boundary layer and the progressive stages through which developing boundary layers pass in the streamwise direction are used to describe the mechanisms by which the models simulate the transition process. Two representative models (Jones and Launder, 1972; Lam and Bremhorst, 1981) are employed in a series of computational tests designed to answer some specific practical questions about the ability of these models to yield accurate, reliable answers over a range of free-stream turbulence conditions.


Author(s):  
Thomas Jaroslawski ◽  
Maxime Forte ◽  
Jean-Marc Moschetta ◽  
Gregory Delattre ◽  
Erwin R. Gowree

Author(s):  
Claus H. Sieverding ◽  
Carlo Bagnera ◽  
A. C. Boege ◽  
Juan A. Cordero Anto`n ◽  
Vincent Lue`re

The paper describes an experimental investigation of the use of different types of boundary layer transition elements for the control of boundary layer separation at low Reynolds numbers. The tests are carried out in a low speed cascade tunnel for Reynolds numbers between 30000 and 200000. For convenience the author used an existing HP turbine guide vane with ∼63 degree turning. To obtain representative adverse pressure gradients as those existing on the rear suction side of highly loaded LP blades the tests are run at a pitch-to-chord ratio of 1. The transition elements include tripwires, single and double rows of spherical roughness elements, balloon type transition elements and a metal sheet actuated by shape memory alloy springs. The optimum position and height of the transition elements are obtained with systematic tests with the trip wire. All other elements are placed at the same position and have approximately the same height. As expected, the transition elements are very beneficial at low Re numbers but deteriorate the performance at high Re numbers. The advantages and drawbacks of the various configurations are discussed and suggestions for real turbine applications are made.


Author(s):  
Darius D. Sanders ◽  
Chase A. Nessler ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Christopher Marks ◽  
...  

The flowfield of the L1A low pressure (LP) turbine blade subjected to traversing upstream wakes was experimentally and computationally investigated at an inlet Reynolds number of 25,000. The L1A profile is a high-lift aft-loaded low pressure turbine blade design. The profile was designed to separate at low Reynolds numbers making it an ideal airfoil for use in flow separation control studies. This study applied a new two-dimensional CFD model to the L1A LP turbine blade design using a three-equation eddy-viscosity type transitional flow model developed by Walters and Leylek. Velocity field measurements were obtained by two-dimensional planer particle image velocimetry, and comparisons were made to the CFD predictions using the Walters and Leylek [13] k-kL-ω transitional flow model and the Menter’s [24] k-ω(SST) model. Hotwire measurements and pressure coefficient distributions were also used to compare each model’s ability to predict the wake produced from the wake generator, and the loading on the L1A LP turbine blade profile with unsteady wakes. These comparisons were used to determine which RANS CFD model could better predict the unsteady L1A blade flowfield at low inlet Reynolds number. This research also provided further characterization of the Walters and Leylek transitional flow model for low Reynolds number aerodynamic flow prediction in low pressure turbine blades.


1991 ◽  
Vol 113 (1) ◽  
pp. 18-26 ◽  
Author(s):  
R. C. Schmidt ◽  
S. V. Patankar

An approach for improving the prediction of boundary layer transition with k–ε type low-Reynolds-number turbulence models is developed and tested. A modification is proposed that limits the production term in the turbulent kinetic energy equation and is based on a simple stability criterion and correlated to the free-stream turbulence level. The modification becomes inactive in the fully turbulent regime, but is shown to improve both the qualitative and quantitative characteristics of the transition predictions. Although the approach is not limited to a particular low-Reynolds-number model, it is implemented herein using the model of Lam and Bremhorst (1981).


Sign in / Sign up

Export Citation Format

Share Document