Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part II: The Application to a Highly Separated Turbine Blade Cascade Geometry

2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There has been a need for improved prediction methods for low pressure turbine (LPT) blades operating at low Reynolds numbers. This is known to occur when LPT blades are subjugated to high altitude operations causing a decrease in the inlet Reynolds number. Boundary layer separation is more likely to be present within the flowfield of the LPT stages due to increase in the region adverse pressure gradients on the blade suction surface. Accurate CFD predictions are needed in order to improve design methods and performance prediction of LPT stages operating at low Reynolds numbers. CFD models were created for the flow over two low pressure turbine blade designs using a new turbulent transitional flow model, originally developed by Walters and Leylek (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202). Part I of this study applied Walters and Leylek’s model to a cascade CFD model of a LPT blade airfoil with a light loading level. Flows were simulated over a Reynolds number range of 15,000–100,000 and predicted the laminar-to-turbulent transitional flow behavior adequately. It showed significant improvement in performance prediction compared to conventional RANS turbulence models. Part II of this paper presents the application of the prediction methodology developed in Part I to both two-dimensional and three-dimensional cascade models of a largely separated LPT blade geometry with a high blade loading level. Comparisons were made with available experimental cascade results on the prediction of the inlet Reynolds number effect on surface static pressure distribution, suction surface boundary layer behavior, and the wake total pressure loss coefficient. The kT-kL-ω transitional flow model accuracy was judged sufficient for an understanding of the flow behavior within the flow passage, and can identify when and where a separation event occurs. This model will provide the performance prediction needed for modeling of low Reynolds number effects on more complex geometries.

Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There is an increasing interest in design methods and performance prediction for aircraft engine turbines operating at low Reynolds numbers. In this regime, boundary layer separation may be more likely to occur in the turbine flow passages. For accurate computational fluid dynamics (CFD) predictions of the flow, correct modeling of laminar-turbulent boundary layer transition is essential to capture the details of the flow. To investigate possible improvements in model fidelity, CFD models were created for the flow over two low pressure turbine blade designs. A new three-equation eddy-viscosity type turbulent transitional flow model, originally developed by Walters and Leylek (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202), was employed for the current Reynolds averaged Navier–Stokes (RANS) CFD calculations. Previous studies demonstrated the ability of this model to accurately predict separation and boundary layer transition characteristics of low Reynolds number flows. The present research tested the capability of CFD with the Walters and Leylek turbulent transitional flow model to predict the boundary layer behavior and performance of two different turbine cascade configurations. Flows over low pressure turbine (LPT) blade airfoils with different blade loading characteristics were simulated over a Reynolds number range of 15,000–100,000 and predictions were compared with experimental cascade results. Part I of this paper discusses the prediction methodology that was developed and its validation using a lightly loaded LPT blade airfoil design. The turbulent transitional flow model sensitivity to turbulent flow parameters was investigated and showed a strong dependence on freestream turbulence intensity with a second-order effect of turbulent length scale. Focusing on the calculation of the total pressure loss coefficients to judge performance, the CFD simulation incorporating Walters and Leylek’s turbulent transitional flow model produced adequate prediction of the Reynolds number performance for the lightly loaded LPT blade cascade geometry. Significant improvements in performance were shown over predictions of conventional RANS turbulence models. Historically, these models cannot adequately predict boundary layer transition.


Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There is increasing interest in design methods and performance prediction for aircraft engine turbines operating at low Reynolds numbers. In this regime, boundary layer separation may be more likely to occur in the turbine flow passages. For accurate CFD predictions of the flow, correct modeling of laminar-turbulent boundary layer transition is essential to capture the details of the flow. To investigate possible improvements in model fidelity, CFD models were created for the flow over two low pressure turbine blade designs. A new three-equation eddy-viscosity type turbulent transitional flow model originally developed by Walters and Leylek was employed for the current RANS CFD calculations. Previous studies demonstrated the ability of this model to accurately predict separation and boundary layer transition characteristics of low Reynolds number flows. The present research tested the capability of CFD with the Walters and Leylek turbulent transitional flow model to predict the boundary layer behavior and performance of two different turbine cascade configurations. Flows over the Pack-B turbine blade airfoil and the midspan section of a typical low pressure turbine (TLPT) blade were simulated over a Reynolds number range of 15,000–100,000, and predictions were compared to experimental cascade results. The turbulent transitional flow model sensitivity to turbulent flow parameters was investigated and showed a strong dependence on free-stream turbulence intensity with a second order effect of turbulent length scale. Focusing on the calculation of the total pressure loss coefficients to judge performance, the CFD simulation incorporating Walters and Leylek’s turbulent transitional flow model produced adequate prediction of the Reynolds number performance for the TLPT blade cascade geometry. Furthermore, the correct qualitative flow response to separated shear was observed for the Pack-B blade airfoil. Significant improvements in performance predictions were shown over predictions of conventional RANS turbulence models that cannot adequately model boundary layer transition.


1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


2001 ◽  
Vol 124 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Kenneth W. Van Treuren ◽  
Terrence Simon ◽  
Marc von Koller ◽  
Aaron R. Byerley ◽  
James W. Baughn ◽  
...  

With the new generation of gas turbine engines, low Reynolds number flows have become increasingly important. Designers must properly account for transition from laminar to turbulent flow and separation of the flow from the suction surface, which is strongly dependent upon transition. Of interest to industry are Reynolds numbers based upon suction surface length and flow exit velocity below 150,000 and as low as 25,000. In this paper, the extreme low end of this Reynolds number range is documented by way of pressure distributions, loss coefficients, and identification of separation zones. Reynolds numbers of 25,000 and 50,000 and with 1 percent and 8-9 percent turbulence intensity of the approach flow (free-stream turbulence intensity, FSTI) were investigated. At 25,000 Reynolds number and low FSTI, the suction surface displayed a strong and steady separation region. Raising the turbulence intensity resulted in a very unsteady separation region of nearly the same size on the suction surface. Vortex generators were added to the suction surface, but they appeared to do very little at this Reynolds number. At the higher Reynolds number of 50,000, the low-FSTI case was strongly separated on the downstream portion of the suction surface. The separation zone was eliminated when the turbulence level was increased to 8-9 percent. Vortex generators were added to the suction surface of the low-FSTI case. In this instance, the vortices were able to provide the mixing needed to re-establish flow attachment. This paper shows that massive separation at very low Reynolds numbers (25,000) is persistent, in spite of elevated FSTI and added vortices. However, at a higher Reynolds number, there is opportunity for flow reattachment either with elevated free-stream turbulence or with added vortices. This may be the first documentation of flow behavior at such low Reynolds numbers. Although it is undesirable to operate under these conditions, it is important to know what to expect and how performance may be improved if such conditions are unavoidable.


Author(s):  
Takayuki Matsunuma ◽  
Hiroyuki Abe ◽  
Yasukata Tsutsui ◽  
Koji Murata

The aerodynamic characteristics of turbine cascades are thought to be relatively satisfactory due to the favorable pressure gradient of the accelerating flow. But within the low Reynolds number region of approximately 6×104 where the 300kW ceramic gas turbines which are being developed under the New Sunshine Project of Japan operate, the characteristics such as boundary layer separation, reattachment and secondary flow which lead to prominent power losses can not be easily predicted. In this research, experiments have been conducted to evaluate the performance of an annular turbine stator cascade. Wakes of the cascade were measured using a single hot wire and five hole pressure tube, for a range of blade chord Reynolds numbers based on the inlet condition from 2×104 to 12×104. Flow visualizations on the suction surface of the blade were carried out using oil film method. At low Reynolds numbers, the flow structure in the annular cascade was quite complex and three-dimensional. The separation line on the suction surface moved upstream due to the decrease of Reynolds number. In addition, the growth of secondary flows, i.e., passage vortices and leakage vortex, was extremely under the influence of Reynolds number.


Author(s):  
Hongrui Liu ◽  
Jun Liu ◽  
Qiang Du ◽  
Guang Liu ◽  
Pei Wang

Aggressive inter-turbine duct, which has ultra-high bypass ratio and ultra-short axial length, is widely applied in the modern turbofan engine because it can reduce engine weight and improve low-pressure rotor dynamic characteristics. However, the aggressive inter-turbine duct that has swirling flow, wake, shock, and tip clearance leakage flow of upstream high-pressure turbine, and even has structs in its flow channel, is liable to separate, especially in high-altitude low Reynolds number (Re) condition. In addition, its downstream low-pressure turbine is on the edge of separation too. In this paper, an integrated aggressive inter-turbine duct embedded with wide-chord low-pressure turbine nozzle is adopted to eliminate the aggressive inter-turbine duct's end-wall separation. Since there are many studies on suppressing the blade suction surface's separation by upstream wake, in this study inherent wake is utilized to suppress the boundary layer separation on low-pressure turbine nozzle's suction surface in the integrated aggressive inter-turbine duct. The paper studies the unsteady flow mechanisms of the integrated aggressive inter-turbine duct (especially the separation and transition mechanisms of low-pressure turbine nozzle's suction surface boundary layer) by the computatioinal simulation method.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 364
Author(s):  
Toufik Tayeb Naas ◽  
Shakhawat Hossain ◽  
Muhammad Aslam ◽  
Arifur Rahman ◽  
A. S. M. Hoque ◽  
...  

In this work, a comparative investigation of chaotic flow behavior inside multi-layer crossing channels was numerically carried out to select suitable micromixers. New micromixers were proposed and compared with an efficient passive mixer called a Two-Layer Crossing Channel Micromixer (TLCCM), which was investigated recently. The computational evaluation was a concern to the mixing enhancement and kinematic measurements, such as vorticity, deformation, stretching, and folding rates for various low Reynolds number regimes. The 3D continuity, momentum, and species transport equations were solved by a Fluent ANSYS CFD code. For various cases of fluid regimes (0.1 to 25 values of Reynolds number), the new configuration displayed a mixing enhancement of 40%–60% relative to that obtained in the older TLCCM in terms of kinematic measurement, which was studied recently. The results revealed that all proposed micromixers have a strong secondary flow, which significantly enhances the fluid kinematic performances at low Reynolds numbers. The visualization of mass fraction and path-lines presents that the TLCCM configuration is inefficient at low Reynolds numbers, while the new designs exhibit rapid mixing with lower pressure losses. Thus, it can be used to enhance the homogenization in several microfluidic systems.


Author(s):  
Xiao Qu ◽  
Yanfeng Zhang ◽  
Xingen Lu ◽  
Ge Han ◽  
Ziliang Li ◽  
...  

Periodic wakes affect not only the surface boundary layer characteristics of low-pressure turbine blades and profile losses but also the vortex structures of the secondary flow and the corresponding losses. Thus, understanding the physical mechanisms of unsteady interactions and the potential to eliminate secondary losses is becoming increasingly important for improving the performance of high-lift low-pressure turbines. However, few studies have focused on the unsteady interaction mechanism between periodic wakes and endwall secondary flow in low-pressure turbines. This paper verified the accuracy of computational fluid dynamics by comparing experimental results and those of the numerical predictions by taking a high-lift low-pressure turbine cascade as the research object. Discussion was focused on the interaction mechanisms between the upstream wakes and secondary flow within the high-lift low-pressure turbine. The results indicated that upstream wakes have both positive and negative effects on the endwall flow, where the periodic wakes can decrease significantly the size of the separation bubble, prevent the formation of secondary vorticity structures at relatively high Reynolds numbers (100,000 and 150,000), and reduce the cross-passage pressure gradient of cascade. In addition, periodic wakes can improve the cascade incidence characteristic in terms of reducing the overturning and underturning of the secondary flow at downstream of the cascade all of which are beneficial for decreasing the endwall secondary losses, whereas more endwall boundary layer is involved in the main flow passage due to the wake transport, resulting in increased strength of the secondary flow at low Reynolds number of 25,000 and 50,000. Compared with the results without wakes, the total pressure loss for unsteady condition at the cascade exit decreases by 2.7% and 6.1% at high Reynolds number of 100,000 and 150,000, respectively. However, the secondary loss at unsteady flow conditions increases at low Reynolds number of 25,000 and 50,000.


Sign in / Sign up

Export Citation Format

Share Document