On the Individual and Combined Effects of Intentional Mistuning, Coupling and Damping on the Forced Response of Bladed Disks

Author(s):  
Changbo Yu ◽  
Jianjun Wang ◽  
Qihan Li

Random mistuning always exists in bladed disk structures. The maximum blade forced response amplitudes are often much larger than those of their perfectly tuned counterparts, which leads to eventual failure via high cycle fatigue (HCF). Therefore, it is of great importance to predict and, ultimately, to reduce the blade forced response levels as a result of random mistuning. In this paper, intentional mistuning is introduced into a simplified 12-bladed disk model by varying the stiffness of the blades in periodic harmonic patterns. The individual and combined effects of intentional mistuning, coupling and damping are examined in the absence and presence of random mistuning through numerical study. It is found that there is some threshold value of intentional mistuning and coupling that leads to maximum mistuning effects and certain relations among intentional mistuning strength, integer harmonics, coupling and damping can suppress the response levels of mistuned bladed disks, which provides useful guidelines for safe and reliable designs of bladed disk systems.

Author(s):  
Hongbiao Yu ◽  
K. W. Wang

In this research, piezoelectric networking is investigated as an effective means for vibration suppression of mistuned bladed disk systems. Due to mistuning (i.e., imperfections in blade properties), bladed disks in turbo-machinery often suffer from vibration localization. In such cases, the vibration energy is confined to a small number of blades and forced response can be drastically increased when the structure is under engine order force excitation. To suppress the excessive vibration caused by localization, a piezoelectric networking concept has been proposed and analyzed for a multi-blade system in a previous study by the authors [1]. This research further extends the investigation with focus on circuitry design for a complex bladed disk model with the consideration of coupled blade-disk dynamics. A new multi-circuit piezoelectric network is designed and analyzed for multiple-harmonic vibration suppression of bladed disks. An optimal network is derived analytically based on system analysis. The performance of the network for bladed disks with random mistuning is examined using Monte Carlo simulation. The effects of variations (mistuning and detuning) in circuit parameters are also studied. Finally, a method to improve system performance and robustness is discussed.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Hongbiao Yu ◽  
K. W. Wang

For bladed-disk assemblies in turbomachinery, the elements are often exposed to aerodynamic loadings, the so-called engine order excitations. It has been reported that such excitations could cause significant structural vibration. The vibration level could become even more excessive when the bladed disk is mistuned, and may cause fatigue damage to the engine components. To effectively suppress vibration in bladed disks, a piezoelectric transducer networking concept has been explored previously by the authors. While promising, the idea was developed based on a simplified bladed-disk model without considering the disk dynamics. To advance the state of the art, this research further extends the investigation with focus on new circuitry designs for a more sophisticated and realistic system model with the consideration of coupled-blade-disk dynamics. A novel multicircuit piezoelectric transducer network is synthesized and analyzed for multiple-harmonic vibration suppression of bladed disks. An optimal network is derived analytically. The performance of the network for bladed disks with random mistuning is examined through Monte Carlo simulation. The effects of variations (mistuning and detuning) in circuit parameters are also studied. A method to improve the system performance and robustness utilizing negative capacitance is discussed. Finally, experiments are carried out to demonstrate the vibration suppression capability of the proposed piezoelectric circuitry network.


Author(s):  
Adam Koscso ◽  
E. P. Petrov

Abstract One of the major sources of the damping of the forced vibration for bladed disk structures is the micro-slip motion at the contact interfaces of blade-disk joints. In this paper, the modeling strategies of nonlinear contact interactions at blade roots are examined using high-fidelity modelling of bladed disk assemblies and the nonlinear contact interactions at blade-disk contact patches. The analysis is performed in the frequency domain using multiharmonic harmonic balance method and analytically formulated node-to-node contact elements modelling frictional and gap nonlinear interactions. The effect of the number, location and distribution of nonlinear contact elements are analyzed using cyclically symmetric bladed disks. The possibility of using the number of the contact elements noticeably smaller than the total number of nodes in the finite element mesh created at the contact interface for the high-fidelity bladed disk model is demonstrated. The parameters for the modeling of the root damping are analysed for tuned and mistuned bladed disks. The geometric shapes of blade roots and corresponding slots in disks cannot be manufactured perfectly and there is inevitable root joint geometry variability within the manufacturing tolerances. Based on these tolerances, the extreme cases of the geometry variation are defined and the assessment of the possible effects of the root geometry variation on the nonlinear forced response are performed based on a set of these extreme cases.


Aerospace ◽  
2006 ◽  
Author(s):  
Hongbao Yu ◽  
K. W. Wang

Extensive investigations have been conducted to study the vibration localization phenomenon and the excessive forced response that can be caused by mistuning in bladed disks. Most previous researches have focused on attacking the mistuning issue in the bladed disk, such as reducing the sensitivity of the structure to mistuning through mechanical tailoring, or design optimization. Few have focused on developing effective vibration control methods for such systems. This study extends the piezoelectric network concept, which has been utilized for mode delocalization in periodic structures, to the control of mistuned bladed disks under engine order excitation. A piezoelectric network is synthesized and optimized to effectively suppress the excessive vibration in the bladed disk caused by mistuning. One of the merits of such an approach is that the optimum design is independent of the number of spatial harmonics, or engine orders. Local circuits are first formulated by connecting inductors and resistors with piezoelectric patches on the individual blades. While these local circuits can function as conventional damped absorber when properly tuned, they do not perform well for bladed disks under all engine order excitations. To address this issue, capacitors are introduced to couple the individual local circuitries. Through such networking, an absorber system that is independent of the engine order can be achieved. Monte Carlo simulation is performed to investigate the effectiveness of the network for bladed disk with a range of mistuning level of its mechanical properties. The robustness issue of the network in terms of detuning of the electric circuit parameters is also studied. Finally, negative capacitance is introduced and its effect on the robustness of the network is investigated.


Author(s):  
Javier Avalos ◽  
Marc P. Mignolet

The focus of this paper is on demonstrating the potential to damp entire bladed disks using dampers on only a fraction of the blades. This problem is first considered without the presence of random mistuning, and it is demonstrated that a few dampers at optimized locations can lead to a significant reduction in the forced response of the entire bladed disk. Unfortunately, this optimum design may not be robust with respect to random mistuning and a notable fraction of the reduction in forced response obtained may disappear because of mistuning. To regain the reduction in forced response but with mistuning present, robustness to mistuning is enhanced by using intentional mistuning in addition to dampers. The intentional mistuning strategy selected here is the A/B pattern mistuning in which the blades all belong to either type A or B. An optimization effort is then performed to obtain the best combination of A/B pattern and damper location to minimize the mistuned forced response of the disk. The addition of intentional mistuning in the system is shown to be very efficient, and the optimum bladed disk design does indeed exhibit a significant reduction in mistuned forced response as compared with the tuned system. These findings were obtained on both single-degree-of-freedom per blade-disk models and a reduced order model of a blisk.


Author(s):  
Javier Avalos ◽  
Marc P. Mignolet

The focus of this paper is on demonstrating the potential to damp entire bladed disks using dampers on only a fraction of the blades. This problem is first considered without the presence of random mistuning and it is demonstrated that a few dampers at optimized locations can lead to a significant reduction in the forced response of the entire bladed disk. Unfortunately, this optimum design may not be robust with respect to random mistuning and a notable fraction of the reduction in forced response obtained may disappear because of mistuning. To regain the reduction in forced response but with mistuning present, robustness to mistuning is enhanced by using intentional mistuning in addition to dampers. The intentional mistuning strategy selected here is the A/B pattern mistuning in which the blades all belong to either type A or B. An optimization effort is then performed to obtain the best combination of A/B pattern and damper location to minimize the mistuned forced response of the disk. The addition of intentional mistuning in the system is shown to be very efficient and the optimum bladed disk design does indeed exhibit a significant reduction of mistuned forced response as compared to the tuned system. These findings were obtained on both single-degree-of-freedom per blade disk models and a reduced order model of a blisk.


Author(s):  
E. P. Petrov

A method has been developed for high-accuracy analysis of forced response levels for mistuned bladed disks vibrating in gas flow. Aerodynamic damping, the interaction of vibrating blades through gas flow, and the effects of structural and aerodynamic mistuning are included in the bladed disk model. The method is applicable to cases of high mechanical coupling of blade vibration through a flexible disk and, possibly shrouds, to cases with stiff disks and low mechanical coupling. The interaction of different families of bladed disk modes is included in the analysis providing the capability of analyzing bladed disks with pronounced frequency veering effects. The method allows the use of industrial-size sector models of bladed disks for analysis of forced response of a mistuned structure. The frequency response function matrix of a structurally mistuned bladed disk is derived with aerodynamic forces included. A new phenomenon of reducing bladed disk forced response by mistuning to levels that are several times lower than those of their tuned counterparts is revealed and explained.


Author(s):  
Bing Xiao ◽  
Alejandro J. Rivas-Guerra ◽  
Marc P. Mignolet

This paper focuses on the identification/prediction of the blade exhibiting the largest response in mistuned bladed disks. This information is very important in experimental/testing efforts as it permits the most effective positioning of a few gages to capture the maximum response on the disk. In computational statistical analyses, knowing the highest responding blade is also quite valuable as it may lead to computational savings in the determination of the maximum response. Different strategies are proposed here for the experimental and computational contexts. In the former situation, mistuning is typically unknown but only one or a few disks must be considered. The proposed solution is then to estimate the mistuned blade properties and to rely on this identified bladed disk model to predict the blades that are likely to exhibit the largest responses through exact, full disk solutions. On the contrary, in computational statistical analyses, mistuning is specified but a potentially large number of disks must be analyzed and it is desired to bypass the ensemble of full disk solutions. Accordingly, a novel, computationally very efficient algorithm is proposed for a preliminary estimation of the forced response of mistuned disks from which the blades that are likely to exhibit the largest responses can be predicted. Examples of application on single- and two-degree-of-freedom per blade models and a reduced order model of a blisk demonstrate the reliability of the proposed strategies.


2002 ◽  
Vol 125 (1) ◽  
pp. 131-140 ◽  
Author(s):  
B.-K. Choi ◽  
J. Lentz ◽  
A. J. Rivas-Guerra ◽  
M. P. Mignolet

The focus of the present investigation is on the use of intentional mistuning of bladed disks to reduce their sensitivity to unintentional random mistuning. The class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say). A two-step procedure is then described to optimize the arrangement of these blades around the disk to reduce the effects of unintentional mistuning. First, a pure optimization effort is undertaken to obtain the pattern(s) of the A and B blades that yields small/the smallest value of the largest amplitude of response to a given excitation in the absence of unintentional mistuning. Then, in the second step, a pattern screening technique based on a recently introduced measure of localization is used to determine which of the patterns does have a large/small sensitivity to random unintentional mistuning. In this manner, expensive Monte Carlo simulations can be eliminated. Examples of application involving both simple bladed disk models and a 17-blade industrial rotor clearly demonstrate the significant benefits of using this class of intentionally mistuned disks.


Sign in / Sign up

Export Citation Format

Share Document