Simulation of Methanol-Air Two-Phase Flames Using Various Turbulent Combustion Models

Author(s):  
F. Wang ◽  
Y. Huang ◽  
Y. Z. Wu

Though fossil fuel is running out, liquid fuels nowadays still provide the most energy used by industrial furnaces, automotive and aero engines. How to predict a two-phase turbulent combustion flame is still a big problem to designers. Generally, the liquid fuel is sprayed and mixed with oxygen, and the flame characteristics depends on the fuel atomization, the fuel droplet spatial distribution, and its interaction with the turbulent oxidizer flow field: turbulent heat, mass and momentum transfer, complicated chemical kinetics, and turbulent-chemistry interaction. Turbulent combustion model is a key point for the two phase combustion simulation. For its short time consuming, Reynolds Averaged Navier Stokes (RANS) method nowadays still is the major tool for gas turbine chamber (GTC) designers, but there is not a universal method in RANS GTC spray combustion simulation at present especially for the two-phase turbulent combustion. The Eddy-Break-Up turbulent combustion model (EBU), Eddy Dissipation Concept turbulent combustion model (EDC), steady Laminar Flame-let turbulent combustion Model (LFM) and the Composition PDF transport turbulent combustion model (CPDF) are all widely used models. In this paper, these four turbulent models are used to simulate a methane-air turbulent jet flame measured by Sandia Lab first, then three methanol-air two-phase turbulent flames, in order to know the ability of these turbulent models. In the gas turbulent jet flame simulation, the result of LFM model and CPDF model are in better agreement with the experimental data than those of the EBU and the EDC models’ results. The reason is that the EBU model and EDC model are overestimated the effect of turbulent. In the three different cases of the two phase combustion simulation, CPDF is the best. The prediction ability of the other three models is different in different cases. The EDC predictions are closer to the experimental data when the air flow rate value is lower, whereas the LFM predictions are better when the air flow rate value is higher.

Author(s):  
Mina Shahi ◽  
Jim B. W. Kok ◽  
Artur K. Pozarlik ◽  
J. C. Roman Casado ◽  
Thomas Sponfeldner

The objective of this study is to investigate the sensitivity and accuracy of the combustible flow field prediction for the LIMOUSINE combustor with regards to choices in computational mesh and turbulent combustion model. The LIMOUSINE combustor is a partially premixed bluff body stabilized natural gas combustor designed to operate at 40–80 kW and atmospheric pressure and used to study combustion instabilities. The transient simulation of a turbulent combusting flow with the purpose to study thermo-acoustic instabilities is a very time consuming process. For that reason the meshing approach leading to accurate numerical prediction, known sensitivity, and reduced amount of mesh elements is important. Since the numerical dissipation (and dispersion) is highly dependent on, and affected by, the geometrical mesh quality, it is of high importance to control the mesh distribution and element size across the numerical model. Typically, the structural mesh topology allows using much less grid elements compared to the unstructured grid, however an unstructured mesh is favorable for flows in complex geometries. To explore computational stability and accuracy, the numerical dissipation of the cold flow with mixing of fuel and air is studied first in the absence of the combustion process. Thereafter the studies are extended to combustible flows using standard available ANSYS-CFX combustion models. To validate the predicted variable fields of the combustor’s transient reactive flows, the numerical results for dynamic pressure and temperature variations, resolved under structured and unstructured mesh conditions, are compared with experimental data. The obtained results show minor dependence on the used mesh in the velocity and pressure profiles of the investigated grids under non-reacting conditions. More significant differences are observed in the mixing behavior of air and fuel flows. Here the numerical dissipation of the (unstructured) tetrahedral mesh topology is higher than in the case of the (structured) hexahedral mesh. For that reason, the combusting flow resolved with the use of the hexahedral mesh presents better agreement with experimental data and demands less computational effort. Finally in the paper the performance of the combustion model for reacting flow as a function of mesh configuration is presented, and the main issues of the applied combustion modeling are reviewed.


Author(s):  
Halit Kutkan ◽  
Alberto Amato ◽  
Giovanni Campa ◽  
Giulio Ghirardo ◽  
Luis Tay Wo Chong Hilares ◽  
...  

Abstract This paper presents a RANS turbulent combustion model for CH4/H2/air mixtures which includes the effect of heat losses and flame stretch. This approach extends a previous model concept designed for methane/air mixtures and improves the prediction of flame stabilization when hydrogen is added to the fuel. Heat loss and stretch effects are modelled by tabulating the consumption speed of laminar counter flow flames in a fresh-to burnt configuration with detailed chemistry at various heat loss and flame stretch values. These computed values are then introduced in the turbulent combustion model by means of a turbulent flame speed expression which is derived as a function of flame stretch, heat loss and H2 addition. The model proposed in this paper is compared to existing models on experimental data of spherical expanding turbulent flame speeds. The performance of the model is further validated by comparing CFD predictions to experimental data of an atmospheric turbulent premixed bluff-body stabilized flame fed with CH4/H2/air mixtures ranging from pure methane to pure hydrogen.


2021 ◽  
Author(s):  
Halit Kutkan ◽  
Alberto Amato ◽  
Giovanni Campa ◽  
Giulio Ghirardo ◽  
Luis Tay Wo Chong ◽  
...  

Abstract This paper presents a RANS turbulent combustion model for CH4/H2/air mixtures which includes the effect of heat losses and flame stretch. This approach extends a previous model concept designed for methane/air mixtures and improves the prediction of flame stabilization when hydrogen is added to the fuel. Heat loss and stretch effects are modelled by tabulating the consumption speed of laminar counter flow flames in a fresh-to-burnt configuration with detailed chemistry at various heat loss and flame stretch values. These computed values are then introduced in the turbulent combustion model by means of a turbulent flame speed expression which is derived as a function of flame stretch, heat loss and H2 addition. The model proposed in this paper is compared to existing models on experimental data of spherical expanding turbulent flame speeds. The performance of the model is further validated by comparing CFD predictions to experimental data of an atmospheric turbulent premixed bluff-body stabilized flame fed with CH4/H2/air mixtures ranging from pure methane to pure hydrogen.


Sign in / Sign up

Export Citation Format

Share Document