Heat Transfer Investigations in Multiple Impinging Jets at Low Reynolds Number

Author(s):  
Arvind G. Rao ◽  
Myra Kitron-Belinkov ◽  
Vladimir Krapp ◽  
Yeshayahou Levy

Jet impingement is a well established cooling methodology used for cooling turbine blades in gas turbine engines. Jet impingement results in high heat transfer coefficients as compared to other conventional modes of single phase heat transfer. Most of the research in jet impingement has been confined to high Reynolds number regime. In order to increase the applicability of this technique to non conventional applications like in a low pressure micro turbine combustors or turbine blades, the behavior of such systems in the low Reynolds number regime should be understood. The present paper is a continuation of earlier investigations on the heat transfer behavior of a large jet impingement array in the low Reynolds number regime, especially in the laminar and transitional region. More experiments have been conducted with different geometrical parameters of the array to analyze the effect of these parameters on the average heat transfer coefficient. Numerical simulations with existing CFD tools were carried out in order to understand the fluid mechanics inside such a complex system. The CFD model was validated with the experiments. Different turbulence models were used and it was found that the SST-k-ω model was the best for modeling jet impingement phenomena. It is anticipated that the results obtained from the present exercise will give better insights in optimizing the design of multiple jet impingement cooling systems for high heat density applications.

Author(s):  
Tatsuo Onishi ◽  
Ste´phane Burguburu ◽  
Olivier Dessornes ◽  
Yves Ribaud

A full three dimensional Navier-Stokes solver elsA developed by ONERA is used to design and study the aerothermodynamics of a MEMS-based micro turbine. This work is performed in the framework of micro turbomachinery project at ONERA. A few millimeter scale micro turbine is operated in a low Reynolds number regime (Re = 5,000∼50,000), which implies a more important influence of skin friction and heat transfer than the conventional large-scale gas turbine. The 2D geometry constraints due to the limitation of fabrication technology also distinguish the aerothermodynamic characteristics of a micro turbine from that of conventional turbomachinery. Thus, for the foundation of aerothermodynamic design of micro turbomachinery, understanding of low Reynolds number effects on the performance is required and then the design of the turbine geometry can be optimized. In this study, aero-thermodynamic effects at low Reynolds number and different stator/rotor configurations are examined with a prescribed wall temperature. Losses due to heat transfer to walls and skin friction are estimated and their effects on the operating performance are discussed. Power delivery to turbine blades is checked and found satisfactory to give the objective design value of more than 100W. The effects of turbine exhaust geometry and the number of blades on turbine performance are also discussed.


Author(s):  
Pradeep Shinde ◽  
Mirko Schäfer ◽  
Cheng-Xian Lin

Extensive studies are being carried out by several researchers on the performance prediction of aluminum heat exchangers with different fin and tube geometrical configurations mostly for Reynolds number higher than 100. In the present study, the air-side heat transfer and pressure drop characteristics of the louvered fin micro-channeled, Aluminum heat exchangers are systematically analyzed by a 3D numerical simulation for very low Reynolds number from 25 to 200. Three different heat exchanger geometries obtained for the experimental investigation purposes with constant fin pitch (14 fins per inch) but varied fin geometrical parameters (fin height, fin thickness, louver pitch, louver angle, louver length and flow depth) are numerically investigated. The performance of the heat exchangers is predicted by calculating Colburn j factor and Fanning friction f factor. The effect of fin geometrical parameters on the heat exchanger performance at the Reynolds number range specified is evaluated. The air-side performance of the studied heat exchangers for the specified Reynolds number range is compared with experimental heat exchanger performance data available in the open literature and a good agreement is observed. The present results show that at the studied range of Reynolds number the flow through the heat exchanger is fin directed rather than the louver directed and therefore the heat exchanger shows poor performance. The effect of geometrical parameters on the average heat transfer coefficient is computed and design curves are obtained which can be used to predict the heat transfer performance for a given geometry.


Author(s):  
S Sarkar

The numerical simulation of flow and heat transfer over turbine blades involving laminar-turbulent transition is presented. The predicted results are compared with the experimental surface heat transfer and pressure distributions for two transonic turbine blades over a wide range of flow conditions. The time-dependent, mass-averaged Navier-Stokes equations are solved by an explicit four-stage Runge-Kutta scheme in the finite volume formulation. Local time stepping, variable-coefficient implicit residual smoothing and a full multigrid method have been implemented to accelerate the steady state calculation. The turbulence is simulated by the algebraic Baldwin-Lomax model together with an explicitly imposed model for transition. For comparison, the low-Reynolds-number version of the two-equation ( k-∊) model of Chien is also used. The modified Baldwin-Lomax model performs well in predicting the onset of laminar-turbulent transition, whereas the Chien model shows a tendency to mimic the transition early and over a shorter distance.


Author(s):  
Vadim V. Lemanov ◽  
Viktor I. Terekhov ◽  
Vladimir V. Terekhov

1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Christopher R. Marks ◽  
Rolf Sondergaard ◽  
Mitch Wolff ◽  
Rich Anthony

This paper presents experimental work comparing several Dielectric Barrier Discharge (DBD) plasma actuator configurations for low Reynolds number separation control. Actuators studied here are being investigated for use in a closed loop separation control system. The plasma actuators were fabricated in the U.S. Air Force Research Laboratory Propulsion Directorate’s thin film laboratory and applied to a low Reynolds number airfoil that exhibits similar suction surface behavior to those observed on Low Pressure (LP) Turbine blades. In addition to typical asymmetric arrangements producing downstream jets, one electrode configurations was designed to produce an array of off axis jets, and one produced a spanwise array of linear vertical jets in order to generate vorticity and improved boundary layer to freestream mixing. The actuators were installed on an airfoil and their performance compared by flow visualization, surface stress sensitive film (S3F), and drag measurements. The experimental data provides a clear picture of the potential utility of each design. Experiments were carried out at four Reynolds numbers, 1.4 × 105, 1.0 × 105, 6.0 × 104, and 5.0 × 104 at a-1.5 deg angle of attack. Data was taken at the AFRL Propulsion Directorate’s Low Speed Wind Tunnel (LSWT) facility.


2001 ◽  
Author(s):  
Miles Greiner ◽  
Paul F. Fischer ◽  
Henry Tufo

Abstract The effect of flow rate modulation on low Reynolds number heat transfer enhancement in a transversely grooved passage was numerically simulated using a two-dimensional spectral element technique. Simulations were performed at subcritical Reynolds numbers of Rem = 133 and 267, with 20% and 40% flow rate oscillations. The net pumping power required to modulate the flow was minimized as the forcing frequency approached the predicted natural frequency. However, mixing and heat transfer levels both increased as the natural frequency was approached. Oscillatory forcing in a grooved passage requires two orders of magnitude less pumping power than flat passage systems for the same heat transfer level. Hydrodynamic resonance appears to be an effective method of increasing heat transfer in low Reynolds number systems where pumping power is at a premium, such as micro heat transfer applications.


Sign in / Sign up

Export Citation Format

Share Document