Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade: Part I—External Heat Transfer

Author(s):  
M. Lorenz ◽  
A. Schulz ◽  
H.-J. Bauer

The present experimental study is part of a comprehensive heat transfer analysis on a highly loaded low pressure turbine blade and endwall with varying surface roughness. Whereas a former paper [1] focused on full span heat transfer of a smooth airfoil and surface roughness effects on the endwall, in this work further measurements at the airfoil midspan with different deterministic surface roughness are considered. Part I investigates the external heat transfer enhancement due to rough surfaces whereas part II focuses on surface roughness effects on aerodynamic losses. A set of different arrays of deterministic roughness is investigated in these experiments, varying the height and eccentricity of the roughness elements, showing the combined influence of roughness height and anisotropy of the rough surfaces on laminar to turbulent transition and the turbulent boundary layer as well as boundary layer separation on the pressure and suction side. It is shown that — besides the known effect of roughness height — eccentricity of roughness plays a major role in the onset of transition and the turbulent heat transfer. The experiments are conducted at several free-stream turbulence levels (Tu1 = 1.4% to 10.1%) and different Reynolds numbers.

2011 ◽  
Vol 134 (4) ◽  
Author(s):  
M. Lorenz ◽  
A. Schulz ◽  
H.-J. Bauer

The present experimental study is part of a comprehensive heat transfer analysis on a highly loaded low pressure turbine blade and endwall with varying surface roughness. Whereas a former paper (Lorenz et al., 2009, “An Experimental Study of Airfoil and Endwall Heat Transfer in a Linear Turbine Blade Cascade—Secondary Flow and Surface Roughness Effects,” International Symposium on Heat Transfer in Gas Turbine Systems, Aug. 9–14, Antalya, Turkey) focused on full span heat transfer of a smooth airfoil and surface roughness effects on the endwall, in this work further measurements at the airfoil midspan with different deterministic surface roughness are considered. Part I investigates the external heat transfer enhancement due to rough surfaces, whereas part II focuses on surface roughness effects on aerodynamic losses. A set of different arrays of deterministic roughness is investigated in these experiments, varying the height and eccentricity of the roughness elements, showing the combined influence of roughness height and anisotropy of the rough surfaces on laminar to turbulent transition and the turbulent boundary layer as well as boundary layer separation on the pressure and suction side. It is shown that, besides the known effect of roughness height, eccentricity of roughness plays a major role in the onset of transition and the turbulent heat transfer. The experiments are conducted at several freestream turbulence levels (Tu1=1.4–10.1%) and different Reynolds numbers.


2005 ◽  
Vol 127 (1) ◽  
pp. 200-208 ◽  
Author(s):  
M. Stripf ◽  
A. Schulz ◽  
S. Wittig

External heat transfer measurements on a highly loaded turbine vane with varying surface roughness are presented. The investigation comprises nine different roughness configurations and a smooth reference surface. The rough surfaces consist of evenly spaced truncated cones with varying height, diameter, and distance, thus covering the full range of roughness Reynolds numbers in the transitionally and fully rough regimes. Measurements for each type of roughness are conducted at several freestream turbulence levels (Tu1=4% to 8.8%) and Reynolds numbers, hereby quantifying their combined effect on heat transfer and laminar-turbulent transition. In complementary studies a trip wire is used on the suction side in order to fix the transition location close to the stagnation point, thereby allowing a deeper insight into the effect of roughness on the turbulent boundary layer. The results presented show a strong influence of roughness on the onset of transition even for the smallest roughness Reynolds numbers. Heat transfer coefficients in the turbulent boundary layer are increased by up to 50% when compared to the smooth reference surface.


Author(s):  
M. Stripf ◽  
A. Schulz ◽  
S. Wittig

External heat transfer measurements on a highly loaded turbine vane with varying surface roughness are presented. The investigation comprises nine different roughness configurations and a smooth reference surface. The rough surfaces consist of evenly spaced truncated cones with varying height, diameter and distance, thus covering the full range of roughness Reynolds numbers in the transitionally and fully rough regimes. Measurements for each type of roughness are conducted at several freestream turbulence levels (Tul = 4% to 8.8%) and Reynolds numbers, hereby quantifying their combined effect on heat transfer and laminar-turbulent transition. In complementary studies a trip wire is used on the suction side in order to fix the transition location close to the stagnation point, thereby allowing a deeper insight into the effect of roughness on the turbulent boundary layer. The results presented show a strong influence of roughness on the onset of transition even for the smallest roughness Reynolds numbers. Heat transfer coefficients in the turbulent boundary layer are increased by up to 50% when compared to the smooth reference surface.


2011 ◽  
Vol 134 (4) ◽  
Author(s):  
M. Lorenz ◽  
A. Schulz ◽  
H.-J. Bauer

The present experimental study is part of a comprehensive analysis accounting for heat transfer and aerodynamic losses on a highly loaded low pressure turbine blade with varying surface roughness. Whereas Part I focuses on heat transfer measurements at airfoil midspan with different deterministic surface roughnesses, Part II investigates surface roughness effects on aerodynamic losses of the same airfoil. A set of different arrays of deterministic roughness (the same as used in Part I) is investigated in these experiments. The height and eccentricity of the roughness elements are varied, showing the combined influence of roughness height and anisotropy on the losses produced in the boundary layers. It is shown that the boundary layer loss is dominated by the suction side. Therefore, the investigations focus on measurements of the suction side boundary layer thickness at midspan directly upstream of the trailing edge. The experiments are conducted at several freestream turbulence levels (Tu1=1.4–10.1%) and different Reynolds numbers. The measurements reveal that suction side boundary layer thickness is increased by up to 190% if surface roughness shifts the transition onset upstream. However, in some cases, at low Reynolds numbers and freestream turbulence, surface roughness suppresses boundary layer separation and decreases the trailing edge boundary layer thickness by up to 30%.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
J. P. Bons

The effects of surface roughness on gas turbine performance are reviewed based on publications in the open literature over the past 60 years. Empirical roughness correlations routinely employed for drag and heat transfer estimates are summarized and found wanting. No single correlation appears to capture all of the relevant physics for both engineered and service-related (e.g., wear or environmentally induced) roughness. Roughness influences engine performance by causing earlier boundary layer transition, increased boundary layer momentum loss (i.e., thickness), and/or flow separation. Roughness effects in the compressor and turbine are dependent on Reynolds number, roughness size, and to a lesser extent Mach number. At low Re, roughness can eliminate laminar separation bubbles (thus reducing loss) while at high Re (when the boundary layer is already turbulent), roughness can thicken the boundary layer to the point of separation (thus increasing loss). In the turbine, roughness has the added effect of augmenting convective heat transfer. While this is desirable in an internal turbine coolant channel, it is clearly undesirable on the external turbine surface. Recent advances in roughness modeling for computational fluid dynamics are also reviewed. The conclusion remains that considerable research is yet necessary to fully understand the role of roughness in gas turbines.


1987 ◽  
Vol 53 (6) ◽  
pp. 1393-1396 ◽  
Author(s):  
V. A. Borodulya ◽  
Yu. S. Teplitskii ◽  
Yu. G. Epanov ◽  
I. I. Markevich

Sign in / Sign up

Export Citation Format

Share Document