Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade— Part II: Aerodynamic Losses

2011 ◽  
Vol 134 (4) ◽  
Author(s):  
M. Lorenz ◽  
A. Schulz ◽  
H.-J. Bauer

The present experimental study is part of a comprehensive analysis accounting for heat transfer and aerodynamic losses on a highly loaded low pressure turbine blade with varying surface roughness. Whereas Part I focuses on heat transfer measurements at airfoil midspan with different deterministic surface roughnesses, Part II investigates surface roughness effects on aerodynamic losses of the same airfoil. A set of different arrays of deterministic roughness (the same as used in Part I) is investigated in these experiments. The height and eccentricity of the roughness elements are varied, showing the combined influence of roughness height and anisotropy on the losses produced in the boundary layers. It is shown that the boundary layer loss is dominated by the suction side. Therefore, the investigations focus on measurements of the suction side boundary layer thickness at midspan directly upstream of the trailing edge. The experiments are conducted at several freestream turbulence levels (Tu1=1.4–10.1%) and different Reynolds numbers. The measurements reveal that suction side boundary layer thickness is increased by up to 190% if surface roughness shifts the transition onset upstream. However, in some cases, at low Reynolds numbers and freestream turbulence, surface roughness suppresses boundary layer separation and decreases the trailing edge boundary layer thickness by up to 30%.

Author(s):  
M. Lorenz ◽  
A. Schulz ◽  
H.-J. Bauer

The present experimental study is part of a comprehensive analysis accounting for heat transfer and aerodynamic losses on a highly loaded low pressure turbine blade with varying surface roughness. Whereas part I focuses on heat transfer measurements at airfoil midspan with different deterministic surface roughnesses, part II investigates surface roughness effects on aerodynamic losses of the same airfoil. A set of different arrays of deterministic roughness (the same as used in part I) is investigated in these experiments. The height and eccentricity of the roughness elements is varied, showing the combined influence of roughness height and anisotropy on the losses produced in the boundary layers. It is shown that the boundary layer loss is dominated by the suction side. Therefore, the investigations focus on measurements of the suction side boundary layer thickness at midspan directly upstream of the trailing edge. The experiments are conducted at several free-stream turbulence levels (Tu1 = 1.4% to 10.1%) and different Reynolds numbers. The measurements reveal that suction side boundary layer thickness is increased by up to 190% if surface roughness shifts the transition onset upstream. However, in some cases, at low Reynolds numbers and free-stream turbulence, surface roughness suppresses boundary layer separation and decreases the trailing edge boundary layer thickness by up to 30%.


2005 ◽  
Vol 128 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Takayuki Tsutsui ◽  
Masafumi Kawahara

Heat transfer characteristics around a low aspect ratio cylindrical protuberance placed in a turbulent boundary layer were investigated. The diameters of the protuberance, D, were 40 and 80mm, and the height to diameter aspect ratio H∕D ranged from 0.125 to 1.0. The Reynolds numbers based on D ranged from 1.1×104 to 1.1×105 and the thickness of the turbulent boundary layer at the protuberance location, δ, ranged from 26 to 120mm for these experiments. In this paper we detail the effects of the boundary layer thickness and the protuberance aspect ratio on heat transfer. The results revealed that the overall heat transfer for the cylindrical protuberance reaches a maximum value when H∕δ=0.24.


2011 ◽  
Vol 134 (4) ◽  
Author(s):  
M. Lorenz ◽  
A. Schulz ◽  
H.-J. Bauer

The present experimental study is part of a comprehensive heat transfer analysis on a highly loaded low pressure turbine blade and endwall with varying surface roughness. Whereas a former paper (Lorenz et al., 2009, “An Experimental Study of Airfoil and Endwall Heat Transfer in a Linear Turbine Blade Cascade—Secondary Flow and Surface Roughness Effects,” International Symposium on Heat Transfer in Gas Turbine Systems, Aug. 9–14, Antalya, Turkey) focused on full span heat transfer of a smooth airfoil and surface roughness effects on the endwall, in this work further measurements at the airfoil midspan with different deterministic surface roughness are considered. Part I investigates the external heat transfer enhancement due to rough surfaces, whereas part II focuses on surface roughness effects on aerodynamic losses. A set of different arrays of deterministic roughness is investigated in these experiments, varying the height and eccentricity of the roughness elements, showing the combined influence of roughness height and anisotropy of the rough surfaces on laminar to turbulent transition and the turbulent boundary layer as well as boundary layer separation on the pressure and suction side. It is shown that, besides the known effect of roughness height, eccentricity of roughness plays a major role in the onset of transition and the turbulent heat transfer. The experiments are conducted at several freestream turbulence levels (Tu1=1.4–10.1%) and different Reynolds numbers.


Author(s):  
M. Lorenz ◽  
A. Schulz ◽  
H.-J. Bauer

The present experimental study is part of a comprehensive heat transfer analysis on a highly loaded low pressure turbine blade and endwall with varying surface roughness. Whereas a former paper [1] focused on full span heat transfer of a smooth airfoil and surface roughness effects on the endwall, in this work further measurements at the airfoil midspan with different deterministic surface roughness are considered. Part I investigates the external heat transfer enhancement due to rough surfaces whereas part II focuses on surface roughness effects on aerodynamic losses. A set of different arrays of deterministic roughness is investigated in these experiments, varying the height and eccentricity of the roughness elements, showing the combined influence of roughness height and anisotropy of the rough surfaces on laminar to turbulent transition and the turbulent boundary layer as well as boundary layer separation on the pressure and suction side. It is shown that — besides the known effect of roughness height — eccentricity of roughness plays a major role in the onset of transition and the turbulent heat transfer. The experiments are conducted at several free-stream turbulence levels (Tu1 = 1.4% to 10.1%) and different Reynolds numbers.


1978 ◽  
Vol 100 (4) ◽  
pp. 690-696 ◽  
Author(s):  
A. D. Anderson ◽  
T. J. Dahm

Solutions of the two-dimensional, unsteady integral momentum equation are obtained via the method of characteristics for two limiting modes of light gas launcher operation, the “constant base pressure gun” and the “simple wave gun”. Example predictions of boundary layer thickness and heat transfer are presented for a particular 1 in. hydrogen gun operated in each of these modes. Results for the constant base pressure gun are also presented in an approximate, more general form.


Author(s):  
Joshua B. Anderson ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

The use of compound-angled shaped film cooling holes in gas turbines provides a method for cooling regions of extreme curvature on turbine blades or vanes. These configurations have received surprisingly little attention in the film cooling literature. In this study, a row of laid-back fanshaped holes based on an open-literature design, were oriented at a 45-degree compound angle to the approaching freestream flow. In this study, the influence of the approach flow boundary layer thickness and character were experimentally investigated. A trip wire and turbulence generator were used to vary the boundary layer thickness and freestream conditions from a thin laminar boundary layer flow to a fully turbulent boundary layer and freestream at the hole breakout location. Steady-state adiabatic effectiveness and heat transfer coefficient augmentation were measured using high-resolution IR thermography, which allowed the use of an elevated density ratio of DR = 1.20. The results show adiabatic effectiveness was generally lower than for axially-oriented holes of the same geometry, and that boundary layer thickness was an important parameter in predicting effectiveness of the holes. Heat transfer coefficient augmentation was highly dependent on the freestream turbulence levels as well as boundary layer thickness, and significant spatial variations were observed.


2018 ◽  
Vol 17 (4-5) ◽  
pp. 438-466 ◽  
Author(s):  
Baofeng Cheng ◽  
Yiqiang Han ◽  
Kenneth S Brentner ◽  
Jose Palacios ◽  
Philip J Morris ◽  
...  

The change of helicopter rotor broadband noise due to different surface roughness during ice accretion is investigated. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand facility at The Pennsylvania State University, and the University of Maryland Acoustic Chamber. In both facilities, the measured high-frequency broadband noise increases significantly with increasing surface roughness height. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is thought to be turbulent boundary layer-trailing edge noise. Theory suggests turbulent boundary layer-trailing edge noise scales with Mach number to the fifth power, which is also observed in the experimental data confirming that the dominant broadband noise mechanism during ice accretion is trailing edge noise. A correlation between the ice-induced surface roughness and the broadband noise level is developed. The correlation is strong, which can be used as an ice accretion early detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of two-dimensional airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the turbulent boundary layer-trailing edge noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe’s trailing edge noise model, the increased sound pressure level of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased sound pressure level values agree reasonably well with the experimental results, which are 5.8 and 2.6 dB for large and small roughness height, respectively.


2005 ◽  
Vol 127 (1) ◽  
pp. 200-208 ◽  
Author(s):  
M. Stripf ◽  
A. Schulz ◽  
S. Wittig

External heat transfer measurements on a highly loaded turbine vane with varying surface roughness are presented. The investigation comprises nine different roughness configurations and a smooth reference surface. The rough surfaces consist of evenly spaced truncated cones with varying height, diameter, and distance, thus covering the full range of roughness Reynolds numbers in the transitionally and fully rough regimes. Measurements for each type of roughness are conducted at several freestream turbulence levels (Tu1=4% to 8.8%) and Reynolds numbers, hereby quantifying their combined effect on heat transfer and laminar-turbulent transition. In complementary studies a trip wire is used on the suction side in order to fix the transition location close to the stagnation point, thereby allowing a deeper insight into the effect of roughness on the turbulent boundary layer. The results presented show a strong influence of roughness on the onset of transition even for the smallest roughness Reynolds numbers. Heat transfer coefficients in the turbulent boundary layer are increased by up to 50% when compared to the smooth reference surface.


Author(s):  
Hongyang Li ◽  
Yun Zheng

For the purpose of researching the effect of surface roughness on boundary layer transition and heat transfer of turbine blade, a roughness modification approach for γ-Reθ transition model was proposed based on an in-house CFD code. Taking surface roughness effect into consideration, No. 5411 working condition of Mark II turbine vane was simulated and the results were analyzed in detail. Main conclusions are as follows: Surface roughness has little effect on heat transfer of laminar boundary layer, while has considerable effect on turbulent boundary layer. Compared with smooth surface, equivalent sand roughness of 100μm increases the temperature for about 28.4K on suction side, reaching an increase of 5%. Under low roughness degree, effect of shock wave dominants on boundary layer transition process on suction side, while above the critical degree, effect of surface roughness could abruptly change the transition point.


Sign in / Sign up

Export Citation Format

Share Document