Dynamic Stress Prediction in Centrifugal Compressor Blades Using Fluid Structure Interaction

Author(s):  
Andrew H. Lerche ◽  
J. Jeffrey Moore ◽  
Nicholas M. White ◽  
James Hardin

A computational model is developed that predicts stresses in the blades of a centrifugal compressor. The blade vibrations are caused by the wakes coming off stationary inlet guide vanes upstream of the impeller, which create a periodic excitation on the impeller blades. When this excitation frequency matches the resonant frequency of the impeller blades, resonant vibration is experienced. This vibration leads to high cycle fatigue, which is a leading cause of blade failure in turbomachinery. Although much research has been performed on axial flow turbomachinery, little has been published for radial machines such as centrifugal compressors and radial inflow turbines. A time domain coupled fluid-structure computational model is developed. The model couples the codes unidirectionally, where pressures are transferred to the structural code during the transient solution, and the fluid mesh remains unaffected by the structural displacements. A Fourier analysis is performed of the resulting strains to predict both amplitude and frequency content. This modeling method was first applied to a compressor in a single stage centrifugal compressor test rig. The analysis results were then validated by experimental blade strain measurements from a rotating test. The model correlated very well with the experimental results. In this work, a model is developed for a liquefied natural gas (LNG) centrifugal compressor that experienced repeated blade failures. The model determined stress levels in the blades, which helped to predict the likely cause of failure. The method was also used to investigate design changes to improve the robustness of the impeller design.

Author(s):  
Andrew Lerche ◽  
J. Jeffrey Moore ◽  
Yusheng Feng

This work develops a time domain coupled fluid-structure computational model that predicts dynamic blade stresses in a rotating centrifugal compressor. Although, much research has been performed on axial flow turbomachinery, little has been published for radial machines such as centrifugal compressors and radial inflow turbines. This research develops a time domain coupled fluid-structure computational model using commercially available codes. The model couples the codes unidirectionally, where pressures are transferred to the structural code during the transient solution, and the fluid mesh remains unaffected by the structural displacements. Models are developed for the compressor at blade resonant conditions. The model is then validated with a rotating test of a centrifugal compressor instrumented with blade mounted strain gauges. The test rig is an open loop rig that utilizes an unshrouded centrifugal compressor with a vaneless diffuser. The strain gauge signals are passed through a high gain, low noise amplifier that is mounted on the compressor rotor. This work not only develops a unidirectionally coupled fluid-structure model capable of predicting dynamic strains, but also provides valuable experimental data that can be used for future research and validation cases of fluid-structure interaction (FSI) models.


Author(s):  
Andrew H. Lerche ◽  
J. Jeffrey Moore ◽  
Timothy C. Allison

Blade vibration in turbomachinery is a common problem that can lead to blade failure by high cycle fatigue. Although much research has been performed on axial flow turbomachinery, little has been published for radial flow machines such as centrifugal compressors and radial inflow turbines. This work develops a test rig that measures the resonant vibration of centrifugal compressor blades. The blade vibrations are caused by the wakes coming from the inlet guide vanes. These vibrations are measured using blade mounted strain gauges during a rotating test. The total damping of the blade response from the rotating test is compared to the damping from the modal testing performed on the impeller. The mode shapes of the response and possible effects of mistuning are also discussed. The results show that mistuning can affect the phase cancellation which one would expect to see on a system with perfect cyclic symmetry.


2019 ◽  
Vol 196 ◽  
pp. 00026 ◽  
Author(s):  
Sergey Bogdanets ◽  
Vitaly Blinov ◽  
Viacheslav Sedunin ◽  
Oleg Komarov ◽  
Alexander Skorohodov

In this paper a validation of a computational model is presented for single-stage centrifugal compressor with an axial-flow impeller and a vaneless diffuser. The comparison was made by mass averaged performance. The paper shows that the model used is able to predict overall performance near the design operating point within 1.2% difference. However, further away the model fails to follow the experimental characteristics.


1959 ◽  
Vol 10 (4) ◽  
pp. 345-360 ◽  
Author(s):  
M. D. Wood

The paper concerns a phenomenon which occurs in rows of closely spaced blades, as in an axial flow compressor, when the flow around the blades approaches the stalling condition. Patches of stalled flow can propagate along the blade row, thus causing cyclic variations in the lift on individual blades. Under certain conditions this cyclic loading can lead to large blade stresses, and ultimately to blade failure.


Author(s):  
Mohammad R. Aligoodarz ◽  
Mohammad Reza Soleimani Tehrani ◽  
Hadi Karrabi ◽  
Mohammad R. Roshani

Turbo machineries including compressors performance degrades over the period of operation and deviates from design levels due to causes including dust entrance into the compressor, blades mechanical damage, erosion and corrosion. These lead to reduction in compressor performance, efficiency and pressure ratio. Subsequently gas turbine performance is affected since their operation sate is correlated. In this study the numerical investigation of common causes that determine geometric characteristics of a 2-stage centrifugal compressor running in a gas station, including blades fouling and corrosion is performed. 3D Numerical modeling is implemented along with utilization of Shear Stress Transport (SST) turbulence model and independency from the grids is verified.


Author(s):  
K. Bammert ◽  
R. Milsch

Blades of axial flow compressors are often roughened by corrosion or erosion. There is only scant information about the influence of this roughening on the boundary layers of the blades and thereby on the compressor efficiency. To obtain detailed information for calculating the efficiency drop due to the roughness, experimental investigations with an enlarged cascade have been executed. The results enabled to develop new formulas for a modified friction coefficient in the laminar region and for the laminar-turbulent transition and the separation points of the boundary layer. Thus, together with the Truckenbrodt theory, it was possible, to get a good reproduction of the experimental results.


Author(s):  
Xin-Qian Zheng ◽  
Xiao-Bo Zhou ◽  
Sheng Zhou

By solving unsteady Reynolds-averaged 2-D N-S equations discretized by a high-order scheme, the results showed that the disordered unsteady separated flow could be effectively controlled by periodic suction and blowing in a wide range of incidence, resulting in enhancement of time-averaged aerodynamic performances. The effects of unsteady excitation frequency, amplitude and excitation location were investigated in detail. The effective excitation frequency spans a wide spectrum and there is an optimal excitation frequency that is nearly equal to the Characteristic frequency of vortex shedding. Excitation amplitude exhibits a threshold value (nearly 10% in term of the ratio of maximum velocity of periodic suction and blowing to the velocity of free flow) and an optimal value (nearly 35%). The optimal excitation location is just upstream of the separation point. We also explored feasible unsteady actuators by utilizing upstream wake for constraining unsteady separation in axial flow compressors.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hongkun Li ◽  
Xuefeng Zhang ◽  
Xiaowen Zhang ◽  
Shuhua Yang ◽  
Fujian Xu

Blade is a key piece of component for centrifugal compressor. But blade crack could usually occur as blade suffers from the effect of centrifugal forces, gas pressure, friction force, and so on. It could lead to blade failure and centrifugal compressor closing down. Therefore, it is important for blade crack early warning. It is difficult to determine blade crack as the information is weak. In this research, a pressure pulsation (PP) sensor installed in vicinity to the crack area is used to determine blade crack according to blade vibration transfer process analysis. As it cannot show the blade crack information clearly, signal analysis and empirical mode decomposition (EMD) are investigated for feature extraction and early warning. Firstly, signal filter is carried on PP signal around blade passing frequency (BPF) based on working process analysis. Then, envelope analysis is carried on to filter the BPF. In the end, EMD is carried on to determine the characteristic frequency (CF) for blade crack. Dynamic strain sensor is installed on the blade to determine the crack CF. Simulation and experimental investigation are carried on to verify the effectiveness of this method. The results show that this method can be helpful for blade crack classification for centrifugal compressors.


Sign in / Sign up

Export Citation Format

Share Document