Numerical Simulation of Flow and Heat Transfer in Rotating Cooling Passage With Turning Vane in Hub Region

Author(s):  
Hung-Chieh Chu ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical simulation of three-dimensional turbulent flow and heat transfer was performed in a multi-pass rectangular (AR = 2:1) rotating cooling channel with and without turning vane in the hub region under various flow conditions, with two different Reynolds numbers of 10000 and 25000, two different channel orientations of 45-deg and 90-deg., and the rotation number varies from 0 to 0.2. The present study provides detailed explanation on the dramatic flow change due to the turning vane. The numerical results show that the addition of vane in hub portion does not cause much impact to the flow before the turn. However, it greatly affects flow behaviors and heat transfer characteristics in the turning region and the third passage after the hub turn. Compared to the cases without turning vane, the vane clearly changes local flow pattern, divides the main flow into two separate streams, and alters the flow reattachment location and vortex distribution. The local heat transfer is influenced by this complex flow field and its effects last from the turn portion to the third passage.

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Hung-Chieh Chu ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical simulation of three-dimensional turbulent flow and heat transfer was performed in a multipass rectangular (AR = 2:1) rotating cooling channel with and without turning vane in the hub region under various flow conditions, with two different Reynolds numbers of 10,000 and 25,000, two different channel orientations of 45-deg and 90-deg, and the rotation number varies from 0 to 0.2. This study shows that the addition of the turning vane in the hub turn region does not cause much impact to the flow before the hub. However, it significantly alters the flow reattachment and vortex distribution in the hub turn region and after the hub turn portion. The local heat transfer is deeply influenced by this complex flow field and this turning vane effect lasts from the hub turn region to the portion after it.


2000 ◽  
Vol 6 (4) ◽  
pp. 253-263 ◽  
Author(s):  
R. Kiml ◽  
S. Mochizuki ◽  
A. Murata

The objective of this study is to investigate a heat transfer phenomenon in a straight ribroughened duct which represents a cooling passage of a modern gas turbine blade. Experiments were performed for ribs mounted perpendicularly to the main flow direction on two opposite sides of the duct for the following cases: (1) with no gaps, (2) with gaps=0.33hand (3) with gaps=1hbetween the side walls and ribs (wherehis the rib height). The heat transfer results revealed significant differences among these three cases, showing that the existence of gaps increases the heat transfer. Particularly, the local heat transfer on the wall between the consecutive ribs is higher in the near-side wall region than in the central region. To shed some light on this phenomenon, flow visualization was conducted using the particle tracer method. The flow visualization results revealed the effect of gaps on the three-dimensional flow structure between the ribs. It was concluded that this structure caused the heat transfer enhancement in the near-side wall region.


2013 ◽  
Vol 275-277 ◽  
pp. 642-648
Author(s):  
Hong Xia Gao ◽  
Zhan Xiao ◽  
Yong Qi Xie

For shielding radio frequency and electromagnetic interference, the sealed case is usually used for airborne electronic equipment. As electronic products become faster and incorporate greater functionality, their thermal characters must be well analyzed and designed. Three-dimensional thermal numerical simulations from inside to outside of the sealed case were performed to get a clear sight of the coupling heat transfer in conduction, natural convection, and radiation. Temperature field, fluid flow field, and local heat transfer coefficient layout outside the wall were got, which were compared with the outcomes of the empirical method. The results of numerical simulation showed that in sealed case conduction was the dominant way, and natural convection had the comparative ratio with radiation, both of them were less than 25%. The maximum error of no radiation including could get to 43.2%.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Huitao Yang ◽  
Je-Chin Han

Systematic experiments are conducted to measure heat transfer enhancement and pressure loss characteristics on a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 45 deg parallel ribs. Copper plates fitted with a silicone heater and instrumented with thermocouples are used to measure regionally averaged local heat transfer coefficients. Reynolds numbers studied in the channel range from 30,000 to 400,000. The rib height (e) to hydraulic diameter (D) ratio ranges from 0.1 to 0.18. The rib spacing (p) to height ratio (p/e) ranges from 5 to 10. Results show higher heat transfer coefficients at smaller values of p/e and larger values of e/D, though at the cost of higher friction losses. Results also indicate that the thermal performance of the ribbed channel falls with increasing Reynolds numbers. Correlations predicting Nusselt number (Nu) and friction factor (f¯) as a function of p/e, e/D, and Re are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+), p/e, and e/D.


Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


1987 ◽  
Vol 109 (1) ◽  
pp. 25-30 ◽  
Author(s):  
K. M. Kelkar ◽  
S. V. Patankar

Fluid flow and heat transfer in two-dimensional finned passages were analyzed for constant property laminar flow. The passage is formed by two parallel plates to which fins are attached in a staggered fashion. Both the plates are maintained at a constant temperature. Streamwise periodic variation of the cross-sectional area causes the flow and temperature fields to repeat periodically after a certain developing length. Computations were performed for different values of the Reynolds number, the Prandtl number, geometric parameters, and the fin-conductance parameter. The fins were found to cause the flow to deflect significantly and impinge upon the opposite wall so as to increase the heat transfer significantly. However, the associated increase in pressure drop was an order of magnitude higher than the increase in heat transfer. Streamline patterns and local heat transfer results are presented in addition to the overall results.


1992 ◽  
Vol 114 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B. W. Webb ◽  
T. L. Bergman

Natural convection in an enclosure with a uniform heat flux on two vertical surfaces and constant temperature at the adjoining walls has been investigated both experimentally and theoretically. The thermal boundary conditions and enclosure geometry render the buoyancy-induced flow and heat transfer inherently three dimensional. The experimental measurements include temperature distributions of the isoflux walls obtained using an infrared thermal imaging technique, while the three-dimensional equations governing conservation of mass, momentum, and energy were solved using a control volume-based finite difference scheme. Measurements and predictions are in good agreement and the model predictions reveal strongly three-dimensional flow in the enclosure, as well as high local heat transfer rates at the edges of the isoflux wall. Predicted average heat transfer rates were correlated over a range of the relevant dimensionless parameters.


2005 ◽  
Vol 128 (1) ◽  
pp. 219-229 ◽  
Author(s):  
Shyy Woei Chang ◽  
Yao Zheng

This paper describes an experimental study of heat transfer in a reciprocating planar curved tube that simulates a cooling passage in piston. The coupled inertial, centrifugal, and reciprocating forces in the reciprocating curved tube interact with buoyancy to exhibit a synergistic effect on heat transfer. For the present experimental conditions, the local Nusselt numbers in the reciprocating curved tube are in the range of 0.6–1.15 times of static tube levels. Without buoyancy interaction, the coupled reciprocating and centrifugal force effect causes the heat transfer to be initially reduced from the static level but recovered when the reciprocating force is further increased. Heat transfer improvement and impediment could be superimposed by the location-dependent buoyancy effect. The empirical heat transfer correlation has been developed to permit the evaluation of the individual and interactive effects of inertial, centrifugal, and reciprocating forces with and without buoyancy interaction on local heat transfer in a reciprocating planar curved tube.


2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


Sign in / Sign up

Export Citation Format

Share Document