Integration of a Turbine Cascade Facility Into an Undergraduate Thermo-Propulsion Sequence

Author(s):  
Kurt P. Rouser ◽  
Caitlin R. Thorn ◽  
Aaron R. Byerley ◽  
Charles F. Wisniewski ◽  
Scott R. Nowlin ◽  
...  

The Department of Aeronautics at the United States Air Force Academy utilizes a closed-loop, two-dimensional turbine cascade wind tunnel to reinforce a learning-focused undergraduate thermo-propulsion sequence. While previous work presented in the literature outlined the Academy thermo-propulsion sequence and the contextual framework for instruction, this current paper addresses how the Academy turbine cascade facility is integrated into the aeronautical engineering course sequence. Cadets who concentrate in propulsion are to some extent prepared for each successive course through their contact with the cascade, and ultimately they graduate with an exposure to experimental research that enhances their grasp of gas turbine engine fundamentals. Initially, the cascade is used to reinforce airfoil theory to all cadets in the Fundamentals of Aeronautics course. Aeronautical engineering majors take this course during the first semester of their sophomore year. The next semester all aeronautical engineering majors take Introduction to Aero-thermodynamics. In this course, the closed-loop aspect of the cascade facility is used to reinforce concepts of work addition to the flow. Heat transfer is also discussed, using the heat exchanger that regulates test section temperature. Exposure to the cascade also prepares cadets for the ensuing Introduction to Propulsion and Aeronautics Laboratory courses, taken in the junior and senior year, respectively. In the propulsion course, cadets connect thermodynamic principles to component analysis. In the laboratory course, cadets work in pairs on propulsion projects sponsored by the Air Force Research Laboratory, including projects in the cascade wind tunnel. Individual cadets are selected from the cascade research teams for summer internships, working at an Air Force Research Laboratory turbine cascade tunnel. Ultimately, cadet experiences with the Academy turbine cascade help lay the foundation for a two-part senior propulsion capstone sequence in which cadets design a gas turbine engine starting with the overall cycle selection leading to component-level design. The turbine cascade also serves to integrate propulsion principles and fluid mechanics through a senior elective Computational Fluid Dynamics course. In this course, cadets may select a computational project related to the cascade. Cadets who complete the thermo-propulsion sequence graduate with a thorough understanding of turbine engine fundamentals from both conceptual and applied perspectives. Their exposure to the cascade facility is an important part of the process. An assessment of cadet learning is presented to validate the effectiveness of this integrated research-classroom approach.

Author(s):  
August J. Rolling ◽  
Aaron R. Byerley ◽  
Charles F. Wisniewski

This paper is intended to serve as a template for incorporating technical management majors into a traditional engineering design course. In 2002, the Secretary of the Air Force encouraged the United States Air Force (USAF) Academy to initiate a new interdisciplinary academic major related to systems engineering. This direction was given in an effort to help meet the Air Force’s growing need for “systems” minded officers to manage the development and acquisition of its ever more complex weapons systems. The curriculum for the new systems engineering management (SEM) major is related to the “engineering of large, complex systems and the integration of the many subsystems that comprise the larger system” and differs in the level of technical content from the traditional engineering major. The program allows emphasis in specific cadet—selected engineering tracks with additional course work in human systems, operations research, and program management. Specifically, this paper documents how individual SEM majors have been integrated into aeronautical engineering design teams within a senior level capstone course to complete the preliminary design of a gas turbine engine. As the Aeronautical Engineering (AE) cadets performed the detailed engine design, the SEM cadets were responsible for tracking performance, cost, schedule, and technical risk. Internal and external student assessments indicate that this integration has been successful at exposing both the AE majors and the SEM majors to the benefits of “systems thinking” by giving all the opportunity to employ SE tools in the context of a realistic aircraft engine design project.


Author(s):  
J Scott Thompson ◽  
Douglas D Hodson

Simulation approaches generally fall into two categories: discrete time or discrete event. For military modeling and simulation needs, the two approaches typically align with virtual simulation, which implies human interaction with the simulation program, and constructive simulation, which implies no human interaction. The Air Force Research Laboratory develops and distributes AFSIM (Advanced Framework for Simulation, Integration, and Modeling) to a user community that uses both virtual and constructive simulation. This paper documents the software design and primary algorithms that provide AFSIM’s support for both modes, which is termed a hybrid simulation.


2015 ◽  
Vol 180 (10S) ◽  
pp. 67-75 ◽  
Author(s):  
Nicholas J. DelRaso ◽  
Victor T. Chan ◽  
Camilla A. Mauzy ◽  
Pavel A. Shiyanov

Space Debris ◽  
2000 ◽  
Vol 2 (4) ◽  
pp. 331-356 ◽  
Author(s):  
Charles Stein ◽  
Robert Roybal ◽  
Pawel Tlomak ◽  
Warren Wilson

Sign in / Sign up

Export Citation Format

Share Document