Adiabatic and Overall Effectiveness for a Fully Cooled Turbine Vane

Author(s):  
Thomas E. Dyson ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Sean D. Bradshaw

Adiabatic and overall effectiveness data were measured for a fully cooled, scaled up turbine vane model in a low speed linear cascade with a chord-exit Reynolds number of 700,000. The overall effectiveness is a measure of the external surface temperature relative to the mainstream temperature and the inlet coolant temperature, and consequently is a direct measure of how effectively the surface is cooled. This can be determined experimentally when the experimental model is constructed so that the Biot number of the model and the ratio of the external to internal heat transfer coefficient are chosen so that the model has a similar thermal behavior to that of an actual engine component. The model used in this study had a cooling design that consisted of 149 total coolant holes in 13 rows, including a showerhead containing five rows of holes. The model also incorporated an internal impingement cooling configuration. An identical model was also constructed out of low conductivity foam to measure adiabatic effectiveness. This is the first study to use a large scale, matched Biot number model to measure engine representative overall effectiveness for a vane employing full coverage film cooling. The focus of this research was to determine the relative contributions of the external and internal cooling, and to serve as a baseline for validation of computational simulations. Additionally, a simplified model using measurements of overall effectiveness with internal cooling alone was used to predict overall effectiveness downstream of the showerhead.

2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Marc L. Nathan ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

There have been a number of previous studies of the adiabatic film effectiveness for the showerhead region of a turbine vane, but no previous studies of the overall cooling effectiveness. The overall cooling effectiveness is a measure of the external surface temperature relative to the mainstream temperature and the inlet coolant temperature, and consequently is a direct measure of how effectively the surface is cooled. This can be determined experimentally when the model is constructed so that the Biot number is similar to that of engine components, and the internal cooling is designed so that the ratio of the external to internal heat transfer coefficient is matched to that of the engine. In this study, the overall effectiveness was experimentally measured on a model turbine vane constructed of a material to match Bi for engine conditions. The model incorporated an internal impingement cooling configuration. The cooling design consisted of a showerhead composed of five rows of holes with one additional row on both pressure and suction sides of the vane. An identical model was also constructed out of low conductivity foam to measure adiabatic film effectiveness. Of particular interest in this study was to use the overall cooling effectiveness measurements to identify local hot spots which might lead to failure of the vane. Furthermore, the experimental measurements provided an important database for evaluation of computational fluid dynamics simulations of the conjugate heat transfer effects that occur in the showerhead region. Continuous improvement in both measures of performance was demonstrated with increasing momentum flux ratio.


Author(s):  
Marc L. Nathan ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

There have been a number of previous studies of the adiabatic film effectiveness for the showerhead region of a turbine vane, but no previous studies of the overall cooling effectiveness. The overall cooling effectiveness is a measure of the external surface temperature relative to the mainstream temperature and the inlet coolant temperature, and consequently is a direct measure of how effectively the surface is cooled. This can be determined experimentally when the model is constructed so that the Biot number is similar to that of engine components, and the internal cooling is designed so that the ratio of the external to internal heat transfer coefficient is matched to that of the engine. In this study, the overall effectiveness was experimentally measured on a model turbine vane constructed of a material to match Bi for engine conditions. The model incorporated an internal impingement cooling configuration. The cooling design consisted of a showerhead composed of five rows of holes with one additional row on both pressure and suction sides of the vane. An identical model was also constructed out of low conductivity foam to measure adiabatic film effectiveness. Of particular interest in this study was to use the overall cooling effectiveness measurements to identify local hot spots which might lead to failure of the vane. Furthermore, the experimental measurements provided an important database for evaluation of CFD simulations of the conjugate heat transfer effects that occur in the showerhead region. Continuous improvement in both measures of performance was demonstrated with increasing momentum flux ratio.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Randall P. Williams ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

The overall cooling effectiveness for a turbine airfoil was quantified based on the external surface temperature relative to the mainstream temperature and the inlet coolant temperature. This can be determined experimentally when the model is constructed so that the Biot number is similar to that of engine components. In this study, the overall cooling effectiveness was experimentally measured on a model turbine vane constructed of a material deigned to match Bi for engine conditions. The model incorporated an internal impingement cooling configuration. Overall cooling effectiveness and adiabatic film effectiveness were measured downstream of a single row of round holes positioned on the suction side of the vane. Experiments were conducted to evaluate the cooling effects of internal cooling alone, and then the combined effects of film cooling and internal cooling for a range of coolant flow rates. While the adiabatic film effectiveness decreased when using high momentum flux ratios for the film cooling, due to coolant jet separation, the overall cooling effectiveness increased at higher momentum flux ratios. This increase was due to increased internal cooling effects. Overall cooling effectiveness measurements were also compared to analytical predictions based on a 1D thermal analysis using measured adiabatic film effectiveness and overall cooling effectiveness without film cooling.


Author(s):  
Randall P. Williams ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

The overall cooling effectiveness for a turbine airfoil was quantified based on the external surface temperature relative to the mainstream temperature and the inlet coolant temperature. This can be determined experimentally when the model is constructed so that the Biot number is similar to that of engine components. In this study, the overall cooling effectiveness was experimentally measured on a model turbine vane constructed of a material deigned to match Bi for engine conditions. The model incorporated an internal impingement cooling configuration. Overall cooling effectiveness and adiabatic film effectiveness were measured downstream of a single row of round holes positioned on the suction side of the vane. Experiments were conducted to evaluate the cooling effects of internal cooling alone, and then the combined effects of film cooling and internal cooling for a range of coolant flow rates. While the adiabatic film effectiveness decreased when using high momentum flux ratios for the film cooling, due to coolant jet separation, the overall cooling effectiveness increased at higher momentum flux ratios. This increase was due to increased internal cooling effects. Overall cooling effectiveness measurements were also compared to analytical predictions based on a 1D thermal analysis using measured adiabatic film effectiveness and overall cooling effectiveness without film cooling.


Author(s):  
Carol E. Bryant ◽  
Connor J. Wiese ◽  
James L. Rutledge ◽  
Marc D. Polanka

Gas turbine hot gas path components are protected through a combination of internal cooling and external film cooling. The coolant typically travels through internal passageways, which may involve impingement on the internal surface of a turbine component, before being ejected as film cooling. Internal cooling effects have been studied in facilities that allow measurement of heat transfer coefficients within models of the internal cooling paths, with large heat transfer coefficients generally desirable. External film cooling is typically evaluated through measurements of the adiabatic effectiveness and its effect on the external heat transfer coefficient. Efforts aimed at improving cooling are often focused on either only the internal cooling or the film cooling; however, the common coolant flow means the internal and external cooling schemes are linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. Recently, measurements of overall cooling effectiveness using matched Biot number turbine component models allow evaluation of the nondimensional wall temperature achieved for the fully cooled component. However, the relative contributions of internal cooling, external cooling, and convection within the film cooling holes is not well understood. Large scale, matched Biot number experiments, complemented by CFD simulations, were performed on a fully film cooled cylindrical leading edge model to evaluate the effects of various alterations in the cooling design on the overall effectiveness. The relative influence of film cooling and cooling within the holes was evaluated by selectively disabling individual holes and quantifying how the overall effectiveness changed. Several internal impingement cooling schemes in addition to a baseline case without impingement cooling were also tested. In general, impingement cooling is shown to have a negligible influence on the overall effectiveness in the showerhead region. This indicates that the cost and pressure drop penalties for implementing impingement cooling may not be compensated by an increase in thermal performance. Instead, the internal cooling provided by convection within the holes themselves was shown, along with external film cooling, to be a dominant contribution to the overall cooling effectiveness. Indeed, the numerous holes within the showerhead region impede the ability of internal surface cooling schemes to influence the outside surface temperature. The results of this research may allow improved focus of future efforts on the forms of cooling with the greatest potential to improve cooling performance.


Author(s):  
William R. Stewart ◽  
David A. Kistenmacher ◽  
David G. Bogard

Previous tests simulating the effects of TBC (thermal barrier coating) on an internally and film cooled model turbine vane showed that the insulating effects of TBC dominate over variations in film cooling geometry and blowing ratio. In this study overall and external effectiveness were measured using a matched Biot number model vane simulating a TBC of thickness 0.6d, where d is the film cooing hole diameter. This was a 35% reduction in thermal resistance from previous tests. Overall effectiveness measurements were taken for an internal cooling only configuration, as well as for three rows of showerhead holes with a single row of holes on the pressure side of the vane. This pressure side row of holes was tested both as round holes and as round holes embedded in a realistic trench with a depth of 0.6 hole diameters. Even in the case of this thinner TBC, the insulating effects dominate over film cooling. In addition, using measurements of the convective heat transfer coefficient above the vane surface, and the thermal conductivities of the vane wall and simulated TBC material, the overall effectiveness of the thin TBC thickness can be predicted from the thick TBC data, for an internal cooling only configuration.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Carol E. Bryant ◽  
Connor J. Wiese ◽  
James L. Rutledge ◽  
Marc D. Polanka

Gas turbine components are protected through a combination of internal cooling and external film cooling. Efforts aimed at improving cooling are often focused on either the internal cooling or the film cooling; however, the common coolant flow means the internal and external cooling schemes are linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. Measurements of overall cooling effectiveness, ϕ, using matched Biot number models allow evaluation of fully cooled components; however, the relative contributions of internal cooling, external cooling, and convection within the film cooling holes are not well understood. Matched Biot number experiments, complemented by computational fluid dynamics (CFD) simulations, were performed on a fully film cooled cylindrical leading edge model to quantify the effects of alterations in the cooling design. The relative influence of film cooling and cooling within the holes was evaluated by selectively disabling individual holes and quantifying how ϕ changed. Testing of several impingement cooling schemes revealed that impingement has a negligible influence on ϕ in the showerhead region. This indicates that the pressure drop penalties with impingement may not always be compensated by an increase in ϕ. Instead, internal cooling from convection within the holes and film cooling were shown to be the dominant contributors to ϕ. Indeed, the numerous holes within the showerhead region impede the ability of internal surface cooling schemes to influence the outside surface temperature. These results may allow improved focus of efforts on the forms of cooling with the greatest potential to improve performance.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
N. Sundaram ◽  
K. A. Thole

The endwall of a first-stage vane experiences high heat transfer and low adiabatic effectiveness levels because of high turbine operating temperatures and formation of leading edge vortices. These vortices lift the coolant off the endwall and pull the hot mainstream gases toward it. The region of focus for this study is the vane-endwall junction region near the stagnation location where cooling is very difficult. Two different film-cooling hole modifications, namely, trenches and bumps, were evaluated to improve the cooling in the leading edge region. This study uses a large-scale turbine vane cascade with a single row of axial film-cooling holes at the leading edge of the vane endwall. Individual hole trenches and row trenches were placed along the complete row of film-cooling holes. Two-dimensional semi-elliptically shaped bumps were also evaluated by placing the bumps upstream and downstream of the film-cooling row. Tests were carried out for different trench depths and bump heights under varying blowing ratios. The results indicated that a row trench placed along the row of film-cooling holes showed a greater enhancement in adiabatic effectiveness levels when compared to individual hole trenches and bumps. All geometries considered produced an overall improvement to adiabatic effectiveness levels.


Author(s):  
Amy Mensch ◽  
Karen A. Thole

Ever-increasing thermal loads on gas turbine components require improved cooling schemes to extend component life. Engine designers often rely on multiple thermal protection techniques, including internal cooling and external film cooling. A conjugate heat transfer model for the endwall of a seven-blade cascade was developed to examine the impact of both convective cooling and solid conduction through the endwall. Appropriate parameters were scaled to ensure engine-relevant temperatures were reported. External film cooling and internal jet impingement cooling were tested separately and together for their combined effects. Experiments with only film cooling showed high effectiveness around film-cooling holes due to convective cooling within the holes. Internal impingement cooling provided more uniform effectiveness than film cooling, and impingement effectiveness improved markedly with increasing blowing ratio. Combining internal impingement and external film cooling produced overall effectiveness values as high as 0.4. A simplified, one-dimensional heat transfer analysis was used to develop a prediction of the combined overall effectiveness using results from impingement only and film cooling only cases. The analysis resulted in relatively good predictions, which served to reinforce the consistency of the experimental data.


Author(s):  
John W. McClintic ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

Boundary layer velocity and turbulence profiles were measured on the suction side of a scaled up, film-cooled turbine vane airfoil. There have been a number of previous studies of the velocity profile on a turbine vane, but few have taken velocity profile data with film cooling, and none have taken such data on the suction side of the vane. Velocity and turbulence profile data were taken at two locations on the suction side of the vane — one at a high curvature region and one further downstream in a low curvature region. Data were collected for high (20%) and low (0.5%) mainstream turbulence conditions. For the upstream, high curvature location, velocity and turbulence profiles were found with and without the showerhead blowing and within and outside of the merged showerhead coolant jet. The data for the low curvature, downstream location was taken with injection from the showerhead alone, a second upstream row of holes alone, and the combination of the two cases. It was found that the presence of an active upstream row of holes thickens the boundary layer and increases urms both within and beyond the extent of the boundary layer. Span-wise variations showed that these effects are strongest within the core of the coolant jets. At the downstream location, the boundary layer velocity profile was most strongly influenced by the row of holes immediately upstream of that location. Finally, turbulence integral length scale data showed the effect of large scale mainstream turbulence penetrating the boundary layer. The increase in turbulence, thickening of the boundary layer, and large scale turbulence all play important roles in row to row coolant interactions and affect the film cooling effectiveness.


Sign in / Sign up

Export Citation Format

Share Document