Experimental Investigation of Separated Shear Layer Over a Flat Plate for Various Angles of Attack and Tail Flap Deflections

Author(s):  
K. Anand ◽  
S. Sarkar

Shear layer development over a thick flat plate with a semi-circular leading edge is investigated for a range of angles of attack under different imposed pressure gradients for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The features of the separated shear layer are very well documented through a combination of surface pressure measurement and flow visualization by particle image velocimetry (PIV). The instability of the separated layer occurs because of enhanced receptivity of perturbations leading to the development of significant unsteadiness and three-dimensional motions in the second-half of the bubble. The onset of separation, transition and the point of reattachment are identified for varying angles of attack and imposed pressure gradients. The reattachment point shifts from 12.5% to 53% of chord resulting in enhancement of bubble length from 5% to 47%, while onset of transition shifts upstream from 14% to 7.5% as α increases. The Reynolds number based on the length of laminar shear layer is found to be in the range of 0.7×104 to 2.0×104. The separated shear layer fails to reattach attributing to bubble bursting at α = 12° for β = −45°, while, it bursts at α = 5° for β = +45°. The bubble falls in the category of short bubble for α < 3°, whereas, it becomes long for α ≥ 3°. The data concerning laminar portion and reattachment points agree well with the literature.

Author(s):  
K. Anand ◽  
S. Sarkar ◽  
N. Thilakan

The behaviour of a separated shear layer past a semi-circular leading edge flat plate, its transition and reattachment downstream to separation are investigated for different imposed pressure gradients. The experiments are carried out in a blowing tunnel for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The mean flow characteristics and the instantaneous vector field are documented using a two-component LDA and a planar PIV, whereas, surface pressures are measured with Electronically scanned pressure (ESP). The onset of separation occurs near the blend point for all values of β (flap angle deflection), however, a considerable shift is noticed in the point of reattachment. The dimensions of the separation bubble is highly susceptible to β and plays an important role in the activity of the outer shear layer. Instantaneous results from PIV show a significant unsteadiness in the shear layer at about 30% of the bubble length, which is further amplified in the second half of the bubble leading to three-dimensional motions. The reverse flow velocity is higher for a favourable pressure gradient (β = +30°) and is found to be 21% of the free stream velocity. The Reynolds number calculated based on ll (laminar shear layer length), falls in the range of 0.9×104 to 1.4×104. The numerical values concerning the criterion for separation and reattachment agree well with the available literature.


Author(s):  
A. Samson ◽  
S. Sarkar

The dynamics of separation bubble under the influence of continuous jets ejected near the semi-circular leading edge of a flat plate is presented. Two different streamwise injection angles 30° and 60° and velocity ratios 0.5 and 1 for Re = 25000 and 55000 (based on the leading-edge diameter) are considered here. The flow visualizations illustrating jet and separated layer interactions have been carried out with PIV. The objective of this study is to understand the mutual interactions of separation bubble and the injected jets. It is observed that flow separates at the blending point of semi-circular arc and flat plate. The separated shear layer is laminar up to 20% of separation length after which perturbations are amplified and grows in the second-half of the bubble leading to breakdown and reattachment. Blowing has significantly affected the bubble length and thus, turbulence generation. Instantaneous flow visualizations supports the unsteadiness and development of three-dimensional motions leading to formation of Kelvin-Helmholtz rolls and shedding of large-scale vortices due to jet and bubble interactions. In turn, it has been seen that both the spanwise and streamwise dilution of injected air is highly influenced by the separation bubble.


Author(s):  
A. Samson ◽  
S. Sarkar

The characteristics of a boundary layer from the semi-circular leading edge of a flat plate has been investigated for two levels of stream turbulence (Tu = 0.5% and 7.7%) in a low-speed wind tunnel. Measurements of velocity and surface pressure were made along with a planar PIV to visualize flow structures for varying turbulence levels at a Reynolds number of 25000 (based on the leading edge diameter). At low stream turbulence the measurements reveal flow undergoes separation in the vicinity of leading-edge with reattachment in the downstream. Velocity spectra illustrates that the separated shear layer is laminar up to 20% of separation length and then the perturbations are amplified in the second half attributing to breakdown and reattachment. It is also evident that the shear layer is inviscidly unstable and the predominant shedding frequency when normalised with respect to the momentum thickness at separation shows a good agreement with previous studies. The bubble length is highly susceptible to change in Tu depicting an attached layer which grows into a fully turbulent profile at high Tu. Here, the spectra for an attached layer depicts a turbulent-like flow with band of frequencies from the beginning.


1991 ◽  
Vol 113 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Kyuro Sasaki ◽  
Masaru Kiya

This paper describes the results of a flow visualization study which concerns three-dimensional vortex structures in a leading-edge separation bubble formed along the sides of a blunt flat plate. Dye and hydrogen bubbles were used as tracers. Reynolds number (Re), based on the plate thickness, was varied from 80 to 800. For 80 < Re < 320, the separated shear layer remains laminar up to the reattachment line without significant spanwise distortion of vortex filaments. For 320 < Re < 380, a Λ-shaped deformation of vortex filaments appears shortly downstream of the reattachment and is arranged in-phase in the downstream direction. For Re > 380, hairpin-like structures are formed and arranged in a staggered manner. The longitudinal and spanwise distances of the vortex arrangement are presented as functions of the Reynolds number.


1991 ◽  
Vol 113 (4) ◽  
pp. 635-642 ◽  
Author(s):  
P. Merati ◽  
H. M. McMahon ◽  
K. M. Yoo

Experimental measurements were carried out in an incompressible three-dimensional turbulent shear layer in the vicinity of an appendage mounted perpendicular to a flat plate. The thickness of the turbulent boundary layer as it approached the appendage leading edge was 76 mm or 1.07 times the maximum thickness of the appendage. As the oncoming boundary layer passed around the appendage, a strong secondary flow was formed which was dominated by a horseshoe root vortex. This secondary flow had a major effect in redistributing both the mean flow and turbulence quantities throughout the shear layer, and this effect persisted to a significant degree up to at least three chord lengths downstream of the appendage leading edge.


2011 ◽  
Vol 681 ◽  
pp. 370-410 ◽  
Author(s):  
JOHN D. COULL ◽  
HOWARD P. HODSON

This paper examines the transition process in a boundary layer similar to that present over the suction surfaces of aero-engine low-pressure (LP) turbine blades. This transition process is of significant practical interest since the behaviour of this boundary layer largely determines the overall efficiency of the LP turbine. Modern ‘high-lift’ blade designs typically feature a closed laminar separation bubble on the aft portion of the suction surface. The size of this bubble and hence the inefficiency it generates is controlled by the transition between laminar and turbulent flow in the boundary layer and separated shear layer. The transition process is complicated by the inherent unsteadiness of the multi-stage machine: the wakes shed by one blade row convect through the downstream blade passages, periodically disturbing the boundary layers. As a consequence, the transition to turbulence is multi-modal by nature, being promoted by periodic and turbulent fluctuations in the free stream and the inherent instabilities of the boundary layer. Despite many studies examining the flow behaviour, the detailed physics of the unsteady transition phenomena are not yet fully understood. The boundary-layer transition process has been studied experimentally on a flat plate. The opposing test-section wall was curved to impose a streamwise pressure distribution typical of modern high-lift LP turbines over the flat plate. The presence of an upstream blade row has been simulated by a set of moving bars, which shed wakes across the test section inlet. Further upstream, a grid has been installed to elevate the free-stream turbulence to a level believed to be representative of multi-stage LP turbines. Extensive particle imaging velocimetry (PIV) measurements have been performed on the flat-plate boundary layer to examine the flow behaviour. In the absence of the incoming bar wakes, the grid-generated free-stream turbulence induces relatively weak Klebanoff streaks in the boundary layer which are evident as streamwise streaks of low-velocity fluid. Transition is promoted by the streaks and by the inherent inflectional (Kelvin–Helmholtz (KH)) instability of the separation bubble. In unsteady flow, the incoming bar wakes generate stronger Klebanoff streaks as they pass over the leading edge, which convect downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The region of amplified streaks convects in a similar manner to a classical turbulent spot: the leading and trailing edges travel at around 88% and 50% of the free-stream velocity, respectively. The strongest disturbances travel at around 70% of the free-stream velocity. The wakes induce a second type of disturbance as they pass over the separation bubble, in the form of short-span KH structures. Both the streaks and the KH structures contribute to the early wake-induced transition. The KH structures are similar to those observed in the simulation of separated flow transition with high free-stream turbulence by McAuliffe & Yaras (ASME J. Turbomach., vol. 132, no. 1, 2010, 011004), who observed that these structures originated from localised instabilities of the shear layer induced by Klebanoff streaks. In the current measurements, KH structures are frequently observed directly under the path of the wake. The wake-amplified Klebanoff streaks cannot affect the generation of these structures since they do not arrive at the bubble until later in the wake cycle. Rather, the KH structures arise from an interaction between the flow disturbances in the wake and localised instabilities in the shear layer, which are caused by the weak Klebanoff streaks induced by the grid turbulence. The breakdown of the KH structures to small-scale turbulence occurs a short time after the wake has passed over the bubble, and is largely driven by the arrival of the wake-amplified Klebanoff streaks from the leading edge. During this process, the re-attachment location moves rapidly upstream. The minimum length of the bubble occurs when the strongest wake-amplified Klebanoff streaks arrive from the leading edge; these structures travel at around 70% of the free-stream velocity. The bubble remains shorter than its steady-flow length until the trailing edge of the wake-amplified Klebanoff streaks, travelling at 50% of the free-stream velocity, convect past. After this time, the reattachment location moves aft on the surface as a consequence of a calmed flow region which follows behind the wake-induced turbulence.


Author(s):  
A Samson ◽  
S Sarkar

This paper describes the dynamics of a laminar separation bubble formed on the semi-circular leading edge of constant thickness aerofoil model. Detailed experimental studies are carried out in a low-speed wind tunnel, where surface pressure and time-averaged velocity in the separated region and as well as in the downstream are presented along with flow field visualisations through PIV for various Reynolds numbers ranging from 25,000 to 75,000 (based on the leading edge diameter). The results illustrate that the separated shear layer is laminar up to 20% of separation length and then the perturbations are amplified in the second half attributing to breakdown and reattachment. The bubble length is highly susceptible to change in Reynolds number and plays an important role in outer layer activities. Further, the transition of a separated shear layer is studied through variation of intermittency factor and comparing with existing correlations available in the literature for attached flow and as well as separated flow. Transition of the separated shear layer occurs through formation of K-H rolls, where the intermittency following spot propagation theory appears valid. The predominant shedding frequency when normalised with respect to the momentum thickness at separation remains almost constant with change in Reynolds number. The relaxation is slow after reattachment and the flow takes about five bubble lengths to approach a canonical layer.


2012 ◽  
Vol 698 ◽  
pp. 335-357 ◽  
Author(s):  
Mark C. Thompson

AbstractPrevious experimental studies have shown that the steady recirculation bubble that forms as the flow separates at the leading-edge corner of a long plate, becomes unsteady at relatively low Reynolds numbers of only a few hundreds. The reattaching shear layer irregularly releases two-dimensional vortices, which quickly undergo three-dimensional transition. Similar to the flow over a backward-facing step, this flow is globally stable at such Reynolds numbers, with transition to a steady three-dimensional flow as the first global instability to occur as the Reynolds number is increased to 393. Hence, it appears that the observed flow behaviour is governed by transient growth of optimal two-dimensional transiently growing perturbations (constructed from damped global modes) rather than a single three-dimensional unstable global mode. This paper quantifies the details of the transient growth of two- and three-dimensional optimal perturbations, and compares the predictions to other related cases examined recently. The optimal perturbation modes are shown to be highly concentrated in amplitude in the vicinity of the leading-edge corners and evolve to take the local shape of a Kelvin–Helmholtz shear-layer instability further downstream. However, the dominant mode reaches a maximum amplitude downstream of the position of the reattachment point of the shear layer. The maximum energy growth increases at 2.5 decades for each increment in Reynolds number of 100. Maximum energy growth of the optimal perturbation mode at a Reynolds number of 350 is greater than $1{0}^{4} $, which is typically an upper limit of the Reynolds number range over which it is possible to observe steady flow experimentally. While transient growth analysis concentrates on the evolution of wavepackets rather than continuous forcing, this appears consistent with longitudinal turbulence levels of up to 1 % for some water tunnels, and the fact that the optimal mode is highly concentrated close to the leading-edge corner so that an instantaneous projection of a perturbation field from a noisy inflow onto the optimal mode can be significant. Indeed, direct simulations with inflow noise reveal that a root-mean-square noise level of just 0.1 % is sufficient to trigger some unsteadiness at $\mathit{Re}= 350$, while a 0.5 % level results in sustained shedding. Three-dimensional optimal perturbation mode analysis was also performed showing that at $\mathit{Re}= 350$, the optimal mode has a spanwise wavelength of 11.7 plate thicknesses and is amplified 20 % more than the two-dimensional optimal disturbance. The evolved three-dimensional mode shows strong streamwise vortical structures aligned at a shallow angle to the plate top surface.


2017 ◽  
Vol 826 ◽  
pp. 851-887 ◽  
Author(s):  
Francesco Stella ◽  
Nicolas Mazellier ◽  
Azeddine Kourta

We report an experimental investigation of the separating/reattaching flow over a descending ramp with a $25^{\circ }$ expansion angle. Emphasis is given to mass entrainment through the boundaries of the separated shear layer emanating from the upper edge of the ramp. For this purpose, the turbulent/non-turbulent interface and the separation line inferred from image-based analysis are used respectively to mark the upper and lower bounds of the separated shear layer. The main objective of this study is to identify the physical parameters that scale the development of the separated shear layer, by giving a specific emphasis to the investigation of mass entrainment. Our results emphasise the multiscale nature of mass entrainment through the separated shear layer. The recirculation length $L_{R}$, step height $h$ and free-stream velocity $U_{\infty }$ are the dominant scales that organise the separated flow (and related large-scale quantities as pressure distribution or shear layer growth rate) and set mean mass fluxes. However, local viscous mechanisms seem to be responsible for most of local mass entrainment. Furthermore, it is shown that large-scale mass entrainment is driven by incoming boundary layer properties, since $L_{R}$ scales with $Re_{\unicode[STIX]{x1D703}}$, and in particular by its turbulent state. Surprisingly, the relationships evidenced in this study suggest that these dependencies are established over a large distance upstream of separation and that they might also extend to small scales, at which viscous entrainment is dominant. If confirmed by additional studies, our findings would open new perspectives for designing effective separation control systems.


Sign in / Sign up

Export Citation Format

Share Document