Aerodynamic Measurements on the Interaction of Secondary Jets and Separation Bubble

Author(s):  
A. Samson ◽  
S. Sarkar

The dynamics of separation bubble under the influence of continuous jets ejected near the semi-circular leading edge of a flat plate is presented. Two different streamwise injection angles 30° and 60° and velocity ratios 0.5 and 1 for Re = 25000 and 55000 (based on the leading-edge diameter) are considered here. The flow visualizations illustrating jet and separated layer interactions have been carried out with PIV. The objective of this study is to understand the mutual interactions of separation bubble and the injected jets. It is observed that flow separates at the blending point of semi-circular arc and flat plate. The separated shear layer is laminar up to 20% of separation length after which perturbations are amplified and grows in the second-half of the bubble leading to breakdown and reattachment. Blowing has significantly affected the bubble length and thus, turbulence generation. Instantaneous flow visualizations supports the unsteadiness and development of three-dimensional motions leading to formation of Kelvin-Helmholtz rolls and shedding of large-scale vortices due to jet and bubble interactions. In turn, it has been seen that both the spanwise and streamwise dilution of injected air is highly influenced by the separation bubble.

Author(s):  
K. Anand ◽  
S. Sarkar

Shear layer development over a thick flat plate with a semi-circular leading edge is investigated for a range of angles of attack under different imposed pressure gradients for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The features of the separated shear layer are very well documented through a combination of surface pressure measurement and flow visualization by particle image velocimetry (PIV). The instability of the separated layer occurs because of enhanced receptivity of perturbations leading to the development of significant unsteadiness and three-dimensional motions in the second-half of the bubble. The onset of separation, transition and the point of reattachment are identified for varying angles of attack and imposed pressure gradients. The reattachment point shifts from 12.5% to 53% of chord resulting in enhancement of bubble length from 5% to 47%, while onset of transition shifts upstream from 14% to 7.5% as α increases. The Reynolds number based on the length of laminar shear layer is found to be in the range of 0.7×104 to 2.0×104. The separated shear layer fails to reattach attributing to bubble bursting at α = 12° for β = −45°, while, it bursts at α = 5° for β = +45°. The bubble falls in the category of short bubble for α < 3°, whereas, it becomes long for α ≥ 3°. The data concerning laminar portion and reattachment points agree well with the literature.


1984 ◽  
Vol 144 ◽  
pp. 13-46 ◽  
Author(s):  
N. J. Cherry ◽  
R. Hillier ◽  
M. E. M. P. Latour

Measurements of fluctuating pressure and velocity, together with instantaneous smoke-flow visualizations, are presented in order to reveal the unsteady structure of a separated and reattaching flow. It is shown that throughout the separation bubble a low-frequency motion can be detected which appears to be similar to that found in other studies of separation. This effect is most significant close to separation, where it leads to a weak flapping of the shear layer. Lateral correlation scales of this low-frequency motion are less than the reattachment length, however; it appears that its timescale is about equal to the characteristic timescale for the shear layer and bubble to change between various shedding phases. These phases were defined by the following observations: shedding of pseudoperiodic trains of vortical structures from the reattachment zone, with a characteristic spacing between structures of typically 60% to 80% of the bubble length; a large-scale but irregular shedding of vorticity; and a relatively quiescent phase with the absence of any large-scale shedding structures and a significant ‘necking’ of the shear layer downstream of reattachment.Spanwise correlations of velocity in the shear layer show on average an almost linear growth of spanwise scale up to reattachment. It appears that the shear layer reaches a fully three-dimensional state soon after separation. The reattachment process does not itself appear to impose an immediate extra three-dimensionalizing effect upon the large-scale structures.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
J. P. Gostelow ◽  
R. L. Thomas ◽  
D. S. Adebayo

Further evidence on the similarities between transition and separation phenomena occurring in turbomachinery and wind tunnel flows is provided by measurements on a large scale flat plate under a strong adverse pressure gradient. The flat plate has a long laminar separation bubble and is subjected to a range of disturbances with triggering caused by injection of a transverse jet and subsequently by wakes generated by rods moving transversely upstream of the leading edge. Wakes were originally presented individually. Each individual wake provoked a vigorous turbulent patch, resulting in the instantaneous collapse of the separation bubble. This was followed by a very strong, and stable, calmed region. Following the lead given by the experiments of Gutmark and Blackwelder (1987, “On the Structure of Turbulent Spot in a Heated Laminar Boundary Layer,” Exp. Fluids, 5, pp. 207–229.) on triggered turbulent spots, wakes were then presented in pairs at different wake spacing intervals. In this way wake interaction effects could be investigated in more detail. As in the work on triggered turbulent spots the spacing between impinging wakes was systematically varied; it was found that for close wake spacings the calmed region acted to suppress the turbulence in the following turbulent patch. To investigate whether this phenomenon was a recurring one or whether the flow then reverted back to its unperturbed state, the experiments were repeated with three and four rods instead of two. This has the potential for making available a wide range of variables including direction and speed of rod rotation. It was found that the subsequent wakes were also suppressed by the calming effect. It may be anticipated that this repeating situation is present in a turbomachine, resulting in hidden benefits for blade count and efficiency. There may also conceivably be blade loading advantages while retaining favorable heat transfer conditions in high pressure turbines or stall margin in axial compressors. The inherent and prospective benefits of the calming effect therefore need to be understood thoroughly and new opportunities exploited where this is feasible.a


1991 ◽  
Vol 113 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Kyuro Sasaki ◽  
Masaru Kiya

This paper describes the results of a flow visualization study which concerns three-dimensional vortex structures in a leading-edge separation bubble formed along the sides of a blunt flat plate. Dye and hydrogen bubbles were used as tracers. Reynolds number (Re), based on the plate thickness, was varied from 80 to 800. For 80 < Re < 320, the separated shear layer remains laminar up to the reattachment line without significant spanwise distortion of vortex filaments. For 320 < Re < 380, a Λ-shaped deformation of vortex filaments appears shortly downstream of the reattachment and is arranged in-phase in the downstream direction. For Re > 380, hairpin-like structures are formed and arranged in a staggered manner. The longitudinal and spanwise distances of the vortex arrangement are presented as functions of the Reynolds number.


Author(s):  
J. P. Gostelow ◽  
R. L. Thomas ◽  
D. S. Adebayo

Further evidence on the similarities between transition and separation phenomena occurring in turbomachinery and wind tunnel flows is provided by measurements on a large scale flat plate under a strong adverse pressure gradient. The flat plate has a long laminar separation bubble and is subjected to a range of disturbances with triggering caused by injection of a transverse jet and subsequently by wakes generated by rods moving transversely upstream of the leading edge. Wakes were originally presented individually. Each individual wake provoked a vigorous turbulent patch, resulting in the instantaneous collapse of the separation bubble. This was followed by a very strong, and stable, calmed region. Following the lead given by the experiments of Gutmark and Blackwelder on triggered turbulent spots, wakes were then presented in pairs at different wake spacing intervals. In this way wake interaction effects could be investigated in more detail. As in the work on triggered turbulent spots the spacing between impinging wakes was systematically varied; it was found that for close wake spacings the calmed region acted to suppress the turbulence in the following turbulent patch. To investigate whether this phenomenon was a recurring one, or whether the flow then reverted back to its unperturbed state, the experiments were repeated with three and four rods instead of two. This has the potential for making available a wide range of variables including direction and speed of rod rotation. It was found that the subsequent wakes were also suppressed by the calming effect. It may be anticipated that this repeating situation is present in a turbomachine, resulting in hidden benefits for blade count and efficiency. There may also conceivably be blade loading advantages whilst retaining favorable heat transfer conditions in high pressure turbines or stall margin in axial compressors. The inherent and prospective benefits of the calming effect therefore need to be understood thoroughly and new opportunities exploited where this is feasible.


Author(s):  
A. Samson ◽  
S. Sarkar

The characteristics of a boundary layer from the semi-circular leading edge of a flat plate has been investigated for two levels of stream turbulence (Tu = 0.5% and 7.7%) in a low-speed wind tunnel. Measurements of velocity and surface pressure were made along with a planar PIV to visualize flow structures for varying turbulence levels at a Reynolds number of 25000 (based on the leading edge diameter). At low stream turbulence the measurements reveal flow undergoes separation in the vicinity of leading-edge with reattachment in the downstream. Velocity spectra illustrates that the separated shear layer is laminar up to 20% of separation length and then the perturbations are amplified in the second half attributing to breakdown and reattachment. It is also evident that the shear layer is inviscidly unstable and the predominant shedding frequency when normalised with respect to the momentum thickness at separation shows a good agreement with previous studies. The bubble length is highly susceptible to change in Tu depicting an attached layer which grows into a fully turbulent profile at high Tu. Here, the spectra for an attached layer depicts a turbulent-like flow with band of frequencies from the beginning.


2015 ◽  
Vol 767 ◽  
pp. 782-810 ◽  
Author(s):  
D. J. Garmann ◽  
M. R. Visbal

AbstractA canonical study is developed to investigate the unsteady interactions of a streamwise-oriented vortex impinging upon a finite surface using high-fidelity simulation. As a model problem, an analytically defined vortex superimposed on a free stream is convected towards an aspect-ratio-six ($\mathit{AR}=6$) plate oriented at an angle of ${\it\alpha}=4^{\circ }$ and Reynolds number of $\mathit{Re}=20\,000$ in order to characterize the unsteady modes of interaction resulting from different spanwise positions of the incoming vortex. Outboard, tip-aligned and inboard positioning are shown to produce three distinct flow regimes: when the vortex is positioned outboard of, but in close proximity to, the wingtip, it pairs with the tip vortex to form a dipole that propels itself away from the plate through mutual induction, and also leads to an enhancement of the tip vortex. When the incoming vortex is aligned with the wingtip, the tip vortex is initially strengthened by the proximity of the incident vortex, but both structures attenuate into the wake as instabilities arise in the pair’s feeding sheets from the entrainment of opposite-signed vorticity into either structure. Finally, when the incident vortex is positioned inboard of the wingtip, the vortex bifurcates in the time-mean sense with portions convecting above and below the wing, and the tip vortex is mostly suppressed. The time-mean bifurcation is actually a result of an unsteady spiralling instability in the vortex core that reorients the vortex as it impacts the leading edge, pinches off, and alternately attaches to either side of the wing. The increased effective angle of attack inboard of impingement enhances the three-dimensional recirculation region created by the separated boundary layer off the leading edge which draws fluid from the incident vortex inboard and diminishes its impact on the outboard section of the wing. The slight but remaining downwash present outboard of impingement reduces the effective angle of attack in that region, resulting in a small separation bubble on either side of the wing in the time-mean solution, effectively unloading the tip outboard of impingement and suppressing the tip vortex. All incident vortex positions provide substantial increases in the wing’s lift-to-drag ratio; however, significant sustained rolling moments also result. As the vortex is brought inboard, the rolling moment diminishes and eventually switches sign as the reduced outboard loading balances the augmented sectional lift inboard of impingement.


Author(s):  
Takuma Katayama ◽  
Shinsuke Mochizuki

The present experiment focuses on the vorticity diffusion in a stronger wall jet managed by a three-dimensional flat plate wing in the outer layer. Measurement of the fluctuating velocities and vorticity correlation has been carried out with 4-wire vorticity probe. The turbulent vorticity diffusion due to the large scale eddies in the outer layer is quantitatively examined by using the 4-wire vorticity probe. Quantitative relationship between vortex structure and Reynolds shear stress is revealed by means of directly measured experimental evidence which explains vorticity diffusion process and influence of the manipulating wing. It is expected that the three-dimensional outer layer manipulator contributes to keep convex profile of the mean velocity, namely, suppression of the turbulent diffusion and entrainment.


Author(s):  
M J Crompton ◽  
R V Barrett

Detailed measurements of the separation bubble formed behind the sharp leading edge of a flat plate at low speeds and incidence are reported. The Reynolds number based on chord length ranged from 0.1 × 105 to 5.5 × 105. Extensive use of laser Doppler anemometry allowed detailed velocity measurements throughout the bubble. The particular advantages of laser Doppler anemometry in this application were its ability to define flow direction without ambiguity and its non-intrusiveness. It allowed the mean reattachment point to be accurately determined. The static pressure distribution along the plate was also measured. The length of the separation bubble was primarily determined by the plate incidence, although small variations occurred with Reynolds number because of its influence on the rate of entrainment and growth of the shear layer. Above about 105, the Reynolds number effect was no longer evident. The reverse flow boundary layer in the bubble exhibited signs of periodic stabilization before separating close to the leading edge, forming a small secondary bubble rotating in the opposite sense to the main bubble.


Sign in / Sign up

Export Citation Format

Share Document