CFD Simulation of an Aeroengine Bearing Chamber Using an Enhanced Volume of Fluid (VOF) Method: An Evaluation Using Adaptive Meshing

Author(s):  
Alexandre Crouchez-Pillot ◽  
Hervé P. Morvan

In aero engines, the rotating shafts are supported by a set of bearings, which are enclosed in bearing chambers. Cooling and lubrication oil escapes from the bearings and these chambers are designed to capture and recycle it. A good understanding of the oil behaviour inside bearing chambers is therefore desirable in order to limit the oil volume involved and minimize transmission losses whilst managing the engine core heat in the best possible manner. This study is focused on the simulation of the oil behaviour inside such a chamber and special attention is given to the so-called KIT bearing chamber. The oil phase in the chamber can take different forms e.g. sprays, droplets, thin films or a combination of those. Assuming the oil we want to track remains dominantly as a film and large droplets/filaments, the Volume of Fluid (VOF) method is used in order to track the oil and the oil/air interface in the chamber, hereby investigating the feasibility and merits of such an approach and extending the earlier work carried out by the authors and colleagues. An Enhanced VOF approach coupled with level-set is used here unless stated otherwise. The simulated pump outlet condition, proposed by the University of Nottingham, is also employed in this study, to replicate an engine displacement pump. Since the use of VOF requires a refined mesh in the oil region, an adaptive mesh approach based on the volume of fluid gradient is developed and validated to control the total cell count for some of the cases reported here and limit simulation costs. The Adaptive Mesh Approach (AMA) can allow a better resolution of critical interfaces, better compute the oil break-up (within the limitation of the physical models used) and then track the droplets and filaments. Therefore, not only the CPU time cost might be reduced compared to a fixed mesh approach but significant physical aspects of the problem should be better accounted for. In order to inform the set up and parameters used with this method, and appraise its value for the proposed application, the experimental study of Fabre is used before the approach is applied to the KIT chamber. Good insight is obtained in terms of run time acceleration for such problem when combining the proposed VOF setup with adaptive meshing. Key set up parameters are quantified. The simulations carried out with the proposed set up are proving to be fairly robust and stable. Qualitative (physical) evidence is also encouraging and confirms the value of such an approach to the study of aeroengine bearing chambers.

Author(s):  
Tommaso Fondelli ◽  
Antonio Andreini ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Lorenzo Cipolla

In high speed gearbox systems, the lubrication is generally provided using nozzles to create small oil jets that feed oil into the meshing zone. It is essential that the gear teeth are properly lubricated and that enough oil gets into the tooth spaces to permit sufficient cooling and prevent gearbox failure. A good understanding of the oil behaviour inside the gearbox is therefore desirable, to minimize lubrication losses and reduce the oil volume involved, and ensure gearbox reliability. In order to reach these objectives, a comprehensive numerical study of a single oil jet impinging radially on a single spur gear teeth has been carried out using the Volume of Fluid (VOF) method. The aims of this study are to evaluate the resistant torque produced by the oil jet lubrication, and to develop a physical understanding of the losses deriving from the oil-gear interaction, studying the droplets and ligaments formation produced by the breaking up of the jet as well as the formation of an oil film on the surface of the teeth. URANS calculations have been performed with the commercial code ANSYS FLUENT and an adaptive mesh approach has been developed as a way of significantly reducing the simulation costs. This method allows an automatic mesh refinement and/or coarsening at the air-oil interface based on the volume of fluid gradient, increasing the accuracy of the predictions of oil break-up as well as minimizing numerical diffusion of the interface. A global sensitivity analysis of adopted models has been carried out and a numerical set-up has been defined. Finally several simulations varying the oil injection angle have been performed, in order to evaluate how this parameter affects the resistant torque and the lubrication performances.


Author(s):  
Jack R. J. Wetherell ◽  
Andrew Garmory ◽  
Maciej Skarysz

Abstract The fuel atomisation process and the resultant spray affects nearly all aspects of combustion system performance, and must be well understood to enable the design of future combustion systems. The design of a fuel injector makes both numerical and experimental testing difficult, so simplified test pieces are often used, however, this does not accurately capture atomisation mechanisms and fuel distributions. This paper presents a computational method combining a Coupled Level Set Volume of Fluid model with Adaptive Mesh Refinement. A simple prefilmer has been used to validate the method. Comparisons of the flow field and ligament length distributions show good agreement with published DNS data. The use of AMR allows a lower total cell count, and so a reduction in computational cost of over 60% compared to previously reported results for the same case has been achieved. Further work will look to apply this method to more realistic injector geometry.


Author(s):  
Peter Jeschke ◽  
Joachim Kurzke ◽  
Reinhold Schaber ◽  
Claus Riegler

A prototype preliminary design task for gas turbines is set up to outline the four major requirements a preliminary design program must typically meet: assessment of all major engine components and their interrelations; inclusion of all relevant disciplines; designing over several operating points; and model fidelity zooming at least for individual components. It is described how the “MOdular Performance and Engine Design System” (MOPEDS) — MTU Aero Engines’ software package for the preliminary design of airborne and stationary gas turbines — fulfills these requirements. The program structure, the graphical user interface, and the physical models are briefly presented. A typical design example is carried out emphasizing the necessity for a numerical procedure to find a solution to the many variables and constraints that the design problem comprises. Finally, some dominating multidisciplinary effects are discussed.


2004 ◽  
Vol 126 (2) ◽  
pp. 258-264 ◽  
Author(s):  
P. Jeschke ◽  
J. Kurzke ◽  
R. Schaber ◽  
C. Riegler

A prototype preliminary design task for gas turbines is set up to outline the four major requirements a preliminary design program must typically meet: assessment of all major engine components and their interrelations; inclusion of all relevant disciplines; designing over several operating points; and model fidelity zooming at least for individual components. It is described how the “MOdular Performance and Engine Design System” (MOPEDS)—MTU Aero Engines’ software package for the preliminary design of airborne and stationary gas turbines—fulfills these requirements. The program structure, the graphical user interface, and the physical models are briefly presented. A typical design example is carried out emphasizing the necessity for a numerical procedure to find a solution to the many variables and constraints that the design problem comprises. Finally, some dominating multidisciplinary effects are discussed.


2019 ◽  
Vol 490 (1) ◽  
pp. L52-L56
Author(s):  
Bastian Sander ◽  
Gerhard Hensler

ABSTRACT This paper aims at studying the reliability of a few frequently raised, but not proven, arguments for the modelling of cold gas clouds embedded in or moving through a hot plasma and at sensitizing modellers to a more careful consideration of unavoidable acting physical processes and their relevance. At first, by numerical simulations we demonstrate the growing effect of self-gravity on interstellar clouds and, by this, moreover argue against their initial set-up as homogeneous. We apply the adaptive-mesh refinement code flash with extensions to metal-dependent radiative cooling and external heating of the gas, self-gravity, mass diffusion, and semi-analytic dissociation of molecules, and ionization of atoms. We show that the criterion of Jeans mass or Bonnor–Ebert mass, respectively, provides only a sufficient but not a necessary condition for self-gravity to be effective, because even low-mass clouds are affected on reasonable dynamical time-scales. The second part of this paper is dedicated to analytically study the reduction of heat conduction by a magnetic dipole field. We demonstrate that in this configuration, the effective heat flow, i.e. integrated over the cloud surface, is suppressed by only 32 per cent by magnetic fields in energy equipartition and still insignificantly for even higher field strengths.


Author(s):  
Jeong Hyo Park ◽  
Bong Ju Kim ◽  
Jung Kwan Seo ◽  
Jae Sung Jeong ◽  
Byung Keun Oh ◽  
...  

The aim of this study was to evaluate the load characteristics of steel and concrete tubular members under jet fire, with the motivation to investigate the jet fire load characteristics in FPSO topsides. This paper is part of Phase II of the joint industry project on explosion and fire engineering of FPSOs (EFEF JIP) [1]. To obtain reliable load values, jet fire tests were carried out in parallel with a numerical study. Computational fluid dynamics (CFD) simulation was used to set up an adiabatic wall boundary condition for the jet fire to model the heat transfer mechanism. A concrete tubular member was tested under the assumption that there is no conduction effect from jet fire. A steel tubular member was tested and considered to transfer heat through conduction, convection, and radiation. The temperature distribution, or heat load, was analyzed at specific locations on each type of member. ANSYS CFX [2] and Kameleon FireEx [3] codes were used to obtain similar fire action in the numerical and experimental methods. The results of this study will provide a useful database to determine design values related to jet fire.


2017 ◽  
Vol 170 ◽  
pp. 378-392 ◽  
Author(s):  
Wei Du ◽  
Jianzhou Zhang ◽  
Panpan Lu ◽  
Jian Xu ◽  
Weisheng Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document