cooling and lubrication
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 40)

H-INDEX

12
(FIVE YEARS 5)

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110704
Author(s):  
Rengiah Robinson Gnanadurai ◽  
Solomon Mesfin

In this work, an innovative nanocutting fluid, based on coconut oil was developed by dispersing silver nanoparticles (AgNPs) of size less than 50 nm. The tribological and physical properties of the prepared nanocutting fluid with different volumes of silver nanoparticles were studied. It was found that the addition of 4% by volume of nanoparticles enhanced the properties of the nanocutting fluid compared to the other concentrations studied, thus demonstrating its excellent tribological performance. The effect of the newly developed nanocutting fluid with 4% of silver nanoparticles on cutting performance was also investigated while machining AISI4340 steel with minimal fluid application. Results revealed that the cutting force, cutting temperature, and tool wear are reduced on an average by 22.6%, 12.6%, and 5.3% respectively. It was evident that efficient cooling and lubrication of nanocutting fluid dispersed with silver nanoparticles improved the cutting performance. The outcomes of this work can be considered as a development toward eco-friendly and sustainable machining.


Author(s):  
Sampsa V.A. Laakso ◽  
Dinesh Mallipeddi ◽  
Peter Krajnik

AbstractMetal cutting fluids for improved cooling and lubrication are an environmental risk and a health risk for workers. Minimizing water consumption in industry is also a goal for a more sustainable production. Therefore, metal cutting emulsions that contain hazardous additives and consume considerable amounts of water are being replaced with more sustainable metal cutting fluids and delivery systems, like vegetable oils that are delivered in small aerosol droplets, i.e., via minimum quantity lubrication (MQL). Since the volume of the cutting fluid in MQL is small, the cooling capacity of MQL is not optimal. In order to improve the cooling capacity of the MQL, the spray can be subcooled using liquid nitrogen. This paper investigates subcooled MQL with machining simulations and experiments. The simulations provide complementary information to the experiments, which would be otherwise difficult to obtain, e.g., thermal behavior in the tool-chip contact and residual strains on the workpiece surface. The cBN hard turning simulations and experiments are done for powder-based Cr-Mo-V tool steel, Uddeholm Vanadis 8 using MQL subcooled to −10 °C and regular MQL at room temperature. The cutting forces and tool wear are measured from the experiments that are used as the calibration factor for the simulations. After calibration, the simulations are used to evaluate the thermal effects of the subcooled MQL, and the surface residual strains on the workpiece. The simulations are in good agreement with the experiments in terms of chip morphology and cutting forces. The cutting experiments and simulations show that there is only a small difference between the subcooled MQL and regular MQL regarding the wear behavior, cutting forces, or process temperatures. The simulations predict substantial residual plastic strain on the workpiece surface after machining. The surface deformations are shown to have significant effect on the simulated cutting forces after the initial tool pass, an outcome that has major implications for inverse material modeling.


2021 ◽  
Author(s):  
Mehar Bade ◽  
Vince Meyers ◽  
Eric Suits ◽  
Anthony F. Mannarino ◽  
Jayaram Subramanian

Abstract The development of highly compact and energy-efficient systems is critical for world energy security and technology leadership. Due to the abundance of natural gas, the natural gas fueled distributed energy systems that lower the energy consumption and utility costs would be ideal in the U.S. as well as worldwide markets. To meet these objectives, researchers from Enginuity Power Systems (EPS) are currently working on the development of an ultra-efficient Combined Heat and Power (CHP) system for residential and commercial applications. These CHP systems generate electricity at the point of use while also meeting the space and water heating demands. Furthermore, a single CHP system replaces the conventional electricity generator, space, and water heating systems in residential and commercial applications. The main technical objective of this research article is the demonstration of the fundamental design and performance characteristics of an EPS’s 6 kW–10 kW CHP system intended for residential applications. The proposed residential system utilized a mirror-balanced, patented, inwardly opposed piston, four-stroke internal combustion engine as a prime mover. This novel four-stroke opposed piston design resolved the scavenging, cooling, and lubrication issues faced by the conventional opposed designs in the market while also maintaining the power density, balancing, and performance benefits. Initially, a series of experiments were conducted on the proposed system for different speeds and throttle openings. Later, the combustion, performance, and quantified energy loss pathways were presented at Wide Open Throttle (WOT) conditions to demonstrate the performance benefits of the proposed system. Finally, a performance-oriented framework was developed for the proposed CHP system for future efforts.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1035
Author(s):  
Jacobo Fernández ◽  
Eva María Rubio ◽  
Diego Carou ◽  
Raquel María Lorente-Pedreille

This paper analyzes the efficiency and sustainability of facing operations that are required within maintenance operations in the aeronautical industry. Due to the elevated cost and environmental impact of such processes, reducing the operating time while repairing parts is required. In this work, an experimental study of intermittent facing carried out on a magnesium alloy rod was developed. The experiment resembles real repair and maintenance machining operations, where an intermittent facing represents a more realistic scenario and where the results obtained in continuous turning studies are not always applicable. The work was performed with different cooling and lubrication systems and various cutting conditions, also considering the size of the interruption to analyze their impact in the surface roughness. To this end, surface finished in different measuring zones was studied. The aims of the study are to get a better understanding of the intermittent facing process in magnesium alloys typically employed in aeronautical applications and find the most efficient cutting parameters to obtain an improved surface under the safest and most environmentally respectful conditions.


2021 ◽  
Vol 5 (2) ◽  
pp. 42
Author(s):  
Abdelkrem Eltaggaz ◽  
Ibrahim Nouzil ◽  
Ibrahim Deiab

Minimum Quantity Lubrication nanofluid (MQL-nanofluid) is a viable sustainable alternative to conventional flood cooling and provides very good cooling and lubrication in the machining of difficult to cut materials such as titanium and Inconel. The cutting action provides very difficult conditions for the coolant to access the cutting zone and the level of difficulty increases with higher cutting speeds. Furthermore, high compressive stresses, strain hardening and high chemical activity results in the formation of a ‘seizure zone’ at the tool-chip interface. In this work, the impact of MQL-nanofluid at the seizure zone and the corresponding effects on tool wear, surface finish, and power consumption during machining of Ti-6Al-4V was investigated. Aluminum Oxide (Al2O3) nanoparticles were selected to use as nano-additives at different weight fraction concentrations (0, 2, and 4 wt.%). It was observed that under pure MQL strategy there was significant material adhesion on the rake face of the tool while the adhesion was reduced in the presence of MQL-nanofluid at the tool-chip interface, thus indicating a reduction in the tool chip contact length (TCCL) and reduced seizure effect. Furthermore, the flank wear varied from 0.162 to 0.561 mm and the average surface roughness (Ra) varied from 0.512 to 2.81 µm. The results indicate that the nanoparticle concentration and the reduction in the seizure zone positively influence the tool life and quality of surface finish.


2021 ◽  
Author(s):  
Sampsa Vili Antero Laakso ◽  
Dinesh Mallipeddi ◽  
Peter Krajnik

Abstract Metal cutting fluids for improved cooling and lubrication are an environmental risk and a health risk for workers. Minimizing water consumption in industry is also a goal for a more sustainable production. Therefore, metal cutting emulsions that contain hazardous additives and consume considerable amounts of water are being replaced with more sustainable metal cutting fluids and delivery systems, like vegetable oils that are delivered in small aerosol droplets, i.e. via minimum quantity lubrication (MQL). Since the volume of the cutting fluid in MQL is small, the cooling capacity of MQL is not optimal. In order to improve the cooling capacity of the MQL, the spray can be subcooled using liquid nitrogen. This paper investigates subcooled MQL with machining simulations and experiments. The simulations provide complementary information to the experiments, which would be otherwise difficult to obtain, e.g. thermal behavior in the tool-chip contact and residual strains on the workpiece surface. The cBN hard turning simulations and experiments are done for powder-based Cr-Mo-V tools steel, Uddeholm Vanadis 8 using MQL subcooled to -10 °C and regular MQL at room temperature. The cutting forces and tool wear are measured from the experiments, that are used as the calibration factor for the simulations. After calibration, the simulations are used to evaluate the thermal effects of the subcooled MQL, and the surface residual strains on the workpiece. The simulations are in good agreement with the experiments in terms of chip morphology and cutting forces. The cutting experiments and simulations show that there is only a small difference between the subcooled MQL and regular MQL regarding the wear behavior, cutting forces or process temperatures. The simulations predict substantial residual plastic strain on the workpiece surface after machining. The surface deformations are shown to have significant effect on the simulated cutting forces after the initial tool pass, an outcome that has major implications for inverse material modelling.


2021 ◽  
Author(s):  
Matej Drobnič ◽  
Franci Pušavec ◽  
Miha Čekada

Sustainable machining involves the use of environmentally friendly cooling and lubrication fluids. A novel approach of lubricated liquid carbon dioxide (LCO2) can be used to replace conventional cutting fluids while promising benefits such as cleaner machining and higher productivity. In this study, milling of martensitic stainless steel was performed under different cooling and lubrication conditions (dry, flood, LCO2, LCO2 + MQL). Cutting tool (ball end mill, d = 8mm) was protected by a TiAlSiN PVD hard coating, while the same uncoated tool was used as a reference. Tool life time measurements were taken under different cooling and lubrication conditions at pre-determined time intervals, until the critical tool wear of 0.2 mm was reached on the flank face. At the same time, thermocouples were inserted into the workpiece to measure the temperature directly below the cutting zone. The influence of different cooling and lubrication conditions on surface roughness parameters was also investigated. From the experimental results, surprisingly, conventional flooding machining outperformed LCO2 and LCO2 + MQL assisted machining in terms of surface roughness. Moreover, the TiAlSiN coated tool exhibited roughly three times longer tool life time when compared to the uncoated tool at the same machining conditions. Whereas both, LCO2 and LCO2 + MQL cooling/lubricating strategies significantly reduce the temperature in the cutting zone, dry machining strategy provides the longest tool life time.


Author(s):  
Seyed Hasan Musavi ◽  
Behnam Davoodi ◽  
Seyed A Niknam

Unstable crude oil derivatives are among the main substances added to the mineral-based lubricants (MBL). However, the high purification and disposal costs of such lubricants and consequent environmental difficulties are the major drawbacks of cutting fluid consumption. The lower use of MBL or replacing them with less harmful ones, in principle, vegetable-based lubricants (VBL) are the prime importance of achieving less operating costs and pollution. Furthermore, the use of VBLs is much more recommended if machinability aspects, including tool life, surface, and edge quality, would also be improved. Therefore, in the present study, cutting parameters and lubricant types were used as the experimental variables in the MQL-turning of A286 superalloy. A286 is classified as a difficult-to-cut material with a wide range of applications in the energy and turbine industries. No experimental study was found on the machining of A286 under separate cooling and lubrication with two MQL systems simultaneously. The effects of cutting parameters on both average surface roughness Ra and tool wear morphology were evaluated. Experimental results denoted that the use of VBLs led to better surface topology. On the other hand, the tendency of the built-up layer (BUL) and built-up edge (BUE) phenomenon were intensified when MBL was used. On the word, better tool life is also expected when using VBL. This observation revealed that the use of VBL not only tends to improve productivity and environmental safety aspects but also machinability aspects; in principle, better surface topology and longer tool life are also expected.


Sign in / Sign up

Export Citation Format

Share Document