Last Stage Blade Coupled Shaft Torsional Vibration Analysis of 1000 MW Steam Turbine Generator Set by a Reduced 3D Finite Element Method

Author(s):  
Zi-Li Xu ◽  
Baitong Dou ◽  
Xiaoping Fan ◽  
Yu Fang ◽  
Shouhong Cao ◽  
...  

To increase output and efficiency of steam turbine, long or ultra-long blades are used for last stage blades of low pressure rotors. The application of long blades enhance the coupled effect between the shaft torsional vibration and nodal diameter zero umbrella vibration mode of shrouded blade. In order to precisely calculate the shaft-blade coupled vibration characteristics for large steam turbine generator sets, a reduced method consisted of the three dimensional finite element method and the component mode synthesis method is studied. The study shows that the precision of the reduction method can be guaranteed if the maximum frequency of high order mode used in the coordinate transformation matrix of substructure is higher than 5 times of the maximum frequency of the whole system that one hopes to calculate. The last-stage, the next to last stage blades, and the whole shaft of a 1000MW steam turbine generator set are described by the three dimensional finite element method. The degrees of freedom of the whole system are reduced by using the component mode synthesis method. The coupled vibration of the steam turbine generator set is computed. The vibration of the shaft neglecting the coupled effect is also calculated, and only the moment of inertia of disk-blades is considered. The results by two models are compared with each other. The results show that there exist 4 extra torsional coupled vibration modes when the structural flexibility influence of last-stage and the next to last stage blades is considered.

2013 ◽  
Vol 387 ◽  
pp. 159-163
Author(s):  
Yi Chern Hsieh ◽  
Minh Hai Doan ◽  
Chen Tai Chang

We present the analyses of dynamics behaviors on a stroller wheel by three dimensional finite element method. The vibration of the wheel system causes by two different type barriers on the road as an experiment design to mimic the real road conditions. In addition to experiment analysis, we use two different packages to numerically simulate the wheel system dynamics activities. Some of the simulation results have good agreement with the experimental data in this research. Other interesting data will be measured and analyzed by us for future study and we will investigate them by using adaptive finite element method for increasing the precision of the computation results.


Sign in / Sign up

Export Citation Format

Share Document