Uncertainty Quantification of Hot Gas Ingestion for a Gas Turbine Nozzle Using Polynomial Chaos

Author(s):  
Andrea Panizza ◽  
Alessio Bonini ◽  
Luca Innocenti

One of the most critical parameters in the design process of cooled hot gas components, is the Back Flow Margin (BFM). This dimensionless parameter quantifies the margin to hot gas ingestion through a cooled component wall. A correct evaluation of this parameter is crucial in order to avoid component failure. In presence of combustion chambers that exhibit low pressure losses, BFM becomes one of the most restrictive requirements in the thermal design of cooled components. In this work, a conceptual BFM assessment of the first nozzle of an HP gas turbine is described. The component is subject to the highest thermal load; complex cooling systems are required to ensure an acceptable metal temperature and to match life time requirement. Due to manufacturing tolerances and fluid dynamic uncertainties, hot gas ingestion events are possible also for a nozzle that exhibits BFM higher than zero in nominal conditions, even if with a low probability. Here, the cooling scheme of the nozzle is modeled using an in-house fluid network tool that allows a quick and accurate computation of the equivalent cooling scheme and thus the occurrence of hot gas ingestion, corresponding to a negative flow rate in one of the cooling sub-models. However, as the probability of hot gas ingestion is rather small, an accurate estimation of this event based on the standard Monte Carlo method requires a huge number of runs. A more efficient estimation of this probability can be obtained using stochastic expansion methods, such as the Polynomial Chaos Expansion. Pseudospectral approximations based on either a tensor-product expansion or the Sparse Pseudospectral Approximation Method (SPAM) are used, in order to estimate the probability of hot gas ingestion and the sensitivity to random parameters. The results are compared with those coming from Monte Carlo method, showing the superior accuracy of the stochastic expansion methods.

2017 ◽  
Vol 54 (2) ◽  
pp. 424-443
Author(s):  
Je Guk Kim

Abstract We present an analysis of convergence of a quasi-regression Monte Carlo method proposed by Glasserman and Yu (2004). We show that the method surely converges to the true price of an American option even under multiple underlyings via polynomial chaos expansion and weaker conditions than those used in Glasserman and Yu (2004). Further, we show the number of simulation paths grows exponentially in the number of basis functions to obtain convergence in implementing the method. Finally, we propose a rate of convergence considering regularity of value functions.


Author(s):  
Sahand Sabet ◽  
Mohammad Poursina

This paper presents the method of polynomial chaos expansion (PCE) for the forward kinematic analysis of nondeterministic multibody systems with kinematically closed-loops. The PCE provides an efficient mathematical framework to introduce uncertainty to the system. This is accomplished by compactly projecting each stochastic response output and random input onto the space of appropriate independent orthogonal polynomial base functions. This paper presents the detailed formulation of the kinematics of a constrained multibody system at the position, velocity, and acceleration levels in the PCE scheme. This analysis is performed by projecting the governing kinematic constraint equations of the system onto the space of appropriate polynomial base functions. Furthermore, forward kinematic analysis is conducted at the position, velocity, and acceleration levels for a non-deterministic four-bar mechanism with single and multiple uncertain parameters in the length of linkages of the system. Time efficiency and accuracy of the intrusive PCE approach are compared with the traditionally used Monte Carlo method. The results demonstrate the drastic increase in the computational time of Monte Carlo method when analyzing complex systems with a large number of uncertain parameters while the intrusive PCE provides better accuracy with much less computation complexity.


2011 ◽  
Vol 311-313 ◽  
pp. 1977-1981 ◽  
Author(s):  
Ya Xin Zhang ◽  
Bin Bin Li ◽  
Mamtimin Geni

Due to the limitations of dimension and experiment cost, the reliability analysis of PSSS (Periodic Symmetric Struts Support ) mainly depend on reliability simulation. Inlet temperature, inlet velocity and inlet pressure of the thermal channel are the major random variables impacting PASS. In this paper, it generates 120 groups random variables by using stochastic finite element method ,which combined finite element software and Monte Carlo method. Temperature distribution is obtained based on fluid-structure interaction analysis with each group of variables as boundary condition, then thermal stress distribution is obtained by using steady state thermal analysis. After that, the maximum stress value of each group are extracted out, and the curve fitting for the probabilistic distribution curve of the stress was carried on. Then the function of the probabilistic distribution of maximum stress was got. According to the stress - strength interference model, the reliability calculation of PSSS was carried out, which can provides some reference data for the reliability analysis of the heavy--duty gas turbine.. This shows that by using finite element method and the monte carlo method to carry out structure strength reliability analysis of maximum stress area is feasible.


1974 ◽  
Vol 22 ◽  
pp. 307 ◽  
Author(s):  
Zdenek Sekanina

AbstractIt is suggested that the outbursts of Periodic Comet Schwassmann-Wachmann 1 are triggered by impacts of interplanetary boulders on the surface of the comet’s nucleus. The existence of a cloud of such boulders in interplanetary space was predicted by Harwit (1967). We have used the hypothesis to calculate the characteristics of the outbursts – such as their mean rate, optically important dimensions of ejected debris, expansion velocity of the ejecta, maximum diameter of the expanding cloud before it fades out, and the magnitude of the accompanying orbital impulse – and found them reasonably consistent with observations, if the solid constituent of the comet is assumed in the form of a porous matrix of lowstrength meteoric material. A Monte Carlo method was applied to simulate the distributions of impacts, their directions and impact velocities.


Author(s):  
Makoto Shiojiri ◽  
Toshiyuki Isshiki ◽  
Tetsuya Fudaba ◽  
Yoshihiro Hirota

In hexagonal Se crystal each atom is covalently bound to two others to form an endless spiral chain, and in Sb crystal each atom to three others to form an extended puckered sheet. Such chains and sheets may be regarded as one- and two- dimensional molecules, respectively. In this paper we investigate the structures in amorphous state of these elements and the crystallization.HRTEM and ED images of vacuum-deposited amorphous Se and Sb films were taken with a JEM-200CX electron microscope (Cs=1.2 mm). The structure models of amorphous films were constructed on a computer by Monte Carlo method. Generated atoms were subsequently deposited on a space of 2 nm×2 nm as they fulfiled the binding condition, to form a film 5 nm thick (Fig. 1a-1c). An improvement on a previous computer program has been made as to realize the actual film formation. Radial distribution fuction (RDF) curves, ED intensities and HRTEM images for the constructed structure models were calculated, and compared with the observed ones.


Sign in / Sign up

Export Citation Format

Share Document