Large-Eddy Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity

Author(s):  
Diogo B. Pitz ◽  
John W. Chew ◽  
Olaf Marxen

Buoyancy-induced flows occur in the rotating cavities of gas turbine internal air systems, and are particularly challenging to model due to their inherent unsteadiness. While the global features of such flows are well documented, detailed analyses of the unsteady structure and turbulent quantities have not been reported. In this work we use a high-order numerical method to perform large-eddy simulation (LES) of buoyancy-induced flow in a sealed rotating cavity with either adiabatic or heated disks. New insight is given into long-standing questions regarding the flow characteristics and nature of the boundary layers. The analyses focus on showing time-averaged quantities, including temperature and velocity fluctuations, as well as on the effect of the centrifugal Rayleigh number on the flow structure. Using velocity and temperature data collected over several revolutions of the system, the shroud and disk boundary layers are analysed in detail. The instantaneous flow structure contains pairs of large, counter-rotating convection rolls, and it is shown that unsteady laminar Ekman boundary layers near the disks are driven by the interior flow structure. The shroud thermal boundary layer scales as approximately Ra−1/3, in agreement with observations for natural convection under gravity.

Author(s):  
Diogo B. Pitz ◽  
John W. Chew ◽  
Olaf Marxen

Buoyancy-induced flows occur in the rotating cavities of gas turbine internal air systems, and are particularly challenging to model due to their inherent unsteadiness. While the global features of such flows are well documented, detailed analyses of the unsteady structure and turbulent quantities have not been reported. In this work, we use a high-order numerical method to perform large-Eddy simulation of buoyancy-induced flow in a sealed rotating cavity with either adiabatic or heated disks. New insight is given into long-standing questions regarding the flow characteristics and nature of the boundary layers. The analyses focus on showing time-averaged quantities, including temperature and velocity fluctuations, as well as on the effect of the centrifugal Rayleigh number on the flow structure. Using velocity and temperature data collected over several revolutions of the system, the shroud and disk boundary layers are analyzed in detail. The instantaneous flow structure contains pairs of large, counter-rotating convection rolls, and it is shown that unsteady laminar Ekman boundary layers near the disks are driven by the interior flow structure. The shroud thermal boundary layer scales as approximately Ra−1/3, in agreement with observations for natural convection under gravity.


2020 ◽  
Vol 8 (9) ◽  
pp. 728
Author(s):  
Said Alhaddad ◽  
Lynyrd de Wit ◽  
Robert Jan Labeur ◽  
Wim Uijttewaal

Breaching flow slides result in a turbidity current running over and directly interacting with the eroding, submarine slope surface, thereby promoting further sediment erosion. The investigation and understanding of this current are crucial, as it is the main parameter influencing the failure evolution and fate of sediment during the breaching phenomenon. In contrast to previous numerical studies dealing with this specific type of turbidity currents, we present a 3D numerical model that simulates the flow structure and hydrodynamics of breaching-generated turbidity currents. The turbulent behavior in the model is captured by large eddy simulation (LES). We present a set of numerical simulations that reproduce particular, previously published experimental results. Through these simulations, we show the validity, applicability, and advantage of the proposed numerical model for the investigation of the flow characteristics. The principal characteristics of the turbidity current are reproduced well, apart from the layer thickness. We also propose a breaching erosion model and validate it using the same series of experimental data. Quite good agreement is observed between the experimental data and the computed erosion rates. The numerical results confirm that breaching-generated turbidity currents are self-accelerating and indicate that they evolve in a self-similar manner.


Sign in / Sign up

Export Citation Format

Share Document