Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed

Author(s):  
Eric Kurstak ◽  
Ryan Wilber ◽  
Kiran D’Souza

A considerable amount of research has been conducted to develop reduced order models of bladed disks that can be constructed using single sector calculations when there is mistuning present. A variety of methods have been developed to efficiently handle different types of mistuning ranging from small frequency mistuning, which can be modeled using a variety of methods including component mode mistuning (CMM), to large geometric mistuning, which can be modeled using multiple techniques including pristine rogue interface modal expansion (PRIME). Research has also been conducted on developing reduced order models that can accommodate the variation of specific parameters in the reduced space; these models are referred to as parametric reduced order models (PROMs). This work introduces a PROM for bladed disks that allows for the variation of rotational speed in the reduced space. These PROMs are created by extracting information from sector models at three rotational speeds, and then the appropriate reduced order model is efficiently constructed in the reduced space at any other desired speed. This work integrates these new PROMs for bladed disks with two existing mistuning methods, CMM and PRIME, to illustrate how the method can be readily applied for a variety of mistuning methods. Frequencies and forced response calculations using these new PROMs are compared to the full order finite element calculations to demonstrate the effectiveness of the method.

Author(s):  
Eric Kurstak ◽  
Ryan Wilber ◽  
Kiran D'Souza

A considerable amount of research has been conducted to develop reduced order models (ROMs) of bladed disks that can be constructed using single sector calculations when there is mistuning present. A variety of methods have been developed to efficiently handle different types of mistuning ranging from small frequency mistuning, which can be modeled using a variety of methods including component mode mistuning (CMM), to large geometric mistuning, which can be modeled using multiple techniques including pristine rogue interface modal expansion (PRIME). Research has also been conducted on developing ROMs that can accommodate the variation of specific parameters in the reduced space; these models are referred to as parametric reduced order models (PROMs). This work introduces a PROM for bladed disks that allows for the variation of rotational speed in the reduced space. These PROMs are created by extracting information from sector models at three rotational speeds, and then the appropriate ROM is efficiently constructed in the reduced space at any other desired speed. This work integrates these new PROMs for bladed disks with two existing mistuning methods, CMM and PRIME, to illustrate how the method can be readily applied for a variety of mistuning methods. Frequencies and forced response calculations using these new PROMs are compared to the full order finite element calculations to demonstrate the effectiveness of the method.


Author(s):  
Mauricio Gutierrez Salas ◽  
Ronnie Bladh ◽  
Hans Mårtensson ◽  
Paul Petrie-Repar ◽  
Torsten Fransson ◽  
...  

Accurate structural modeling of blisk mistuning is critical for the analysis of forced response in turbomachinery. Apart from intentional mistuning, mistuning can be due to the manufacturing tolerances, corrosion, foreign object damage and in-service wear in general. It has been shown in past studies that mistuning can increase the risk of blade failure due to energy localization. For weak blade to blade coupling, this localization has been shown to be critical and higher amplitudes of vibration are expected in few blades. This paper presents a comparison of three reduced order models for the structural modeling of blisks. Two of the models assume cyclic symmetry while the third model is free of this assumption. The performance of the reduced order models for cases with small and large amount of mistuning will be examined. The benefits and drawbacks of each reduction method will be discussed.


2013 ◽  
Vol 136 (7) ◽  
Author(s):  
Yasharth Bhartiya ◽  
Alok Sinha

The results from a reduced order model based on frequency mistuning are compared with those from recently developed modified modal domain analysis (MMDA). For the academic bladed rotor considered in this paper, the frequency mistuning analysis is unable to capture the effects of geometric mistuning, whereas MMDA provides accurate estimates of natural frequencies, mode shapes, and forced response.


Author(s):  
Denis Laxalde ◽  
Fabrice Thouverez ◽  
Jean-Pierre Lombard

A damping strategy for integrally bladed disks (blisks) is discussed in this paper; this involves the use of friction rings located underside the wheel of bladed disks. The forced response of the blisk with friction rings is derived in the frequency domain using a frequency domain approach known as Dynamic Lagrangian Frequency-Time method. The blisk is modeled using a reduced-order model and the rings are modeled using beam elements. The results of some numerical simulations and parametric studies are presented. The range of application of this damping device is discussed. Parametric studies are presented and allow to understand the dissipation phenomena. Finally some design and optimization guidelines are given.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ilaria Palomba ◽  
Dario Richiedei ◽  
Alberto Trevisani

This paper introduces a novel method for ranking and selecting the interior modes to be retained in the Craig-Bampton model reduction, in the case of linear vibrating systems under periodic excitation. The aim of the method is to provide an effective ranking of such modes and hence an optimal sequence according to which the interior modes should be progressively included to achieve a desired accuracy of the reduced-order model at the frequencies of interest, while keeping model dimensions to a minimum. An energy-based ranking (EBR) method is proposed, which exploits analytical coefficients to evaluate the contribution of each interior mode to the forced response of the full-order system. The application of the method to two representative systems is discussed: an ultrasonic horn and a vibratory feeder. The results show that the EBR method provides a very effective ranking of the most important interior modes and that it outperforms other state-of-the-art benchmark techniques.


Author(s):  
Javier Avalos ◽  
Marc P. Mignolet

The focus of this paper is on demonstrating the potential to damp entire bladed disks using dampers on only a fraction of the blades. This problem is first considered without the presence of random mistuning, and it is demonstrated that a few dampers at optimized locations can lead to a significant reduction in the forced response of the entire bladed disk. Unfortunately, this optimum design may not be robust with respect to random mistuning and a notable fraction of the reduction in forced response obtained may disappear because of mistuning. To regain the reduction in forced response but with mistuning present, robustness to mistuning is enhanced by using intentional mistuning in addition to dampers. The intentional mistuning strategy selected here is the A/B pattern mistuning in which the blades all belong to either type A or B. An optimization effort is then performed to obtain the best combination of A/B pattern and damper location to minimize the mistuned forced response of the disk. The addition of intentional mistuning in the system is shown to be very efficient, and the optimum bladed disk design does indeed exhibit a significant reduction in mistuned forced response as compared with the tuned system. These findings were obtained on both single-degree-of-freedom per blade-disk models and a reduced order model of a blisk.


Author(s):  
Andreas Hohl ◽  
Christian Siewert ◽  
Lars Panning ◽  
Jo¨rg Wallaschek

A efficient method for the calculation of the forced response of mistuned bladed disks is introduced. Based on the Component Mode Synthesis techniques the structure is divided into substructures, namely the disk and the blades. The Component Mode Synthesis of the disk is calculated with a fast and accurate cyclic symmetry approach. A recently developed method called Wave Based Substructuring is used to describe the (numerous) coupling degrees of freedom between the disk and the blades. The orthogonal waves are derived with a Singular Value Decomposition or a QR decomposition from the coupling nodes’ normal modes calculated by a modal analysis of the full structure.


Author(s):  
Javier Avalos ◽  
Marc P. Mignolet

The focus of this paper is on demonstrating the potential to damp entire bladed disks using dampers on only a fraction of the blades. This problem is first considered without the presence of random mistuning and it is demonstrated that a few dampers at optimized locations can lead to a significant reduction in the forced response of the entire bladed disk. Unfortunately, this optimum design may not be robust with respect to random mistuning and a notable fraction of the reduction in forced response obtained may disappear because of mistuning. To regain the reduction in forced response but with mistuning present, robustness to mistuning is enhanced by using intentional mistuning in addition to dampers. The intentional mistuning strategy selected here is the A/B pattern mistuning in which the blades all belong to either type A or B. An optimization effort is then performed to obtain the best combination of A/B pattern and damper location to minimize the mistuned forced response of the disk. The addition of intentional mistuning in the system is shown to be very efficient and the optimum bladed disk design does indeed exhibit a significant reduction of mistuned forced response as compared to the tuned system. These findings were obtained on both single-degree-of-freedom per blade disk models and a reduced order model of a blisk.


Author(s):  
Yun Han ◽  
Marc P. Mignolet

This paper focuses on the formulation and validation of a novel perturbation method for the prediction of the forced response of mistuned bladed disks. At the contrary of previous approaches, the proposed one involves the sum of the inverses of the tuned and mistuned impedance matrices through the use of the Sherman-Morrison-Woodbury formula. Then, considering these inverses as diagonal dominant matrices leads to an efficient series representation of the forced response of mistuned bladed disks. A detailed validation effort of this new procedure was next achieved. In particular, it was demonstrated that this approach leads to a convergent series representation over the entire range of blade-disk coupling levels for small mistuning. The dominant parameter affecting the magnitude of the largest mistuning for which convergence occurs is shown to be the system damping with a weaker effect of the blade-disk coupling. Examples of application to a single-degree-of-freedom per blade model and the reduced order model of a blisk demonstrate the potential of this novel approach. Finally, the applicability of this technique for the optimization of intentional mistuning pattern is shown.


Author(s):  
S. Mehrdad Pourkiaee ◽  
Stefano Zucca

A new reduced order modeling technique for nonlinear vibration analysis of mistuned bladed disks with shrouds is presented. The developed reduction technique employs two component mode synthesis methods, namely, the Craig-Bampton (CB) method followed by a modal synthesis based on loaded interface (LI) modeshapes (Benfield and Hruda). In the new formulation, the fundamental sector is divided into blade and disk components. The CB method is applied to the blade, where nodes lying on shroud contact surfaces and blade–disk interfaces are retained as master nodes, while modal reductions are performed on the disk sector with LIs. The use of LI component modes allows removing the blade–disk interface nodes from the set of master nodes retained in the reduced model. The result is a much more reduced order model (ROM) with no need to apply any secondary reduction. In the paper, it is shown that the ROM of the mistuned bladed disk can be obtained with only single-sector calculation, so that the full finite element model of the entire bladed disk is not necessary. Furthermore, with the described approach, it is possible to introduce the blade frequency mistuning directly into the reduced model. The nonlinear forced response is computed using the harmonic balance method and alternating frequency/time domain approach. Numerical simulations revealed the accuracy, efficiency, and reliability of the new developed technique for nonlinear vibration analysis of mistuned bladed disks with shroud friction contacts.


Sign in / Sign up

Export Citation Format

Share Document