LES Investigation of Boussinesq Constitutive Relation Validity in a Corner Separation Flow

Author(s):  
Jean-François Monier ◽  
Nicolas Poujol ◽  
Mathieu Laurent ◽  
Feng Gao ◽  
Jérôme Boudet ◽  
...  

The present study aims at analysing the Boussinesq constitutive relation validity in a corner separation flow of a compressor cascade. The Boussinesq constitutive relation is commonly used in Reynolds-averaged Navier-Stokes (RANS) simulations for turbomachinery design. It assumes an alignment between the Reynolds stress tensor and the zero-trace mean strain-rate tensor. An indicator that measures the alignment between these tensors is used to test the validity of this assumption in a high fidelity large-eddy simulation. Eddy-viscosities are also computed using the LES database and compared. A large-eddy simulation (LES) of a LMFA-NACA65 compressor cascade, in which a corner separation is present, is considered as reference. With LES, both the Reynolds stress tensor and the mean strain-rate tensor are known, which allows the construction of the indicator and the eddy-viscosities. Two constitutive relations are evaluated. The first one is the Boussinesq constitutive relation, while the second one is the quadratic constitutive relation (QCR), expected to render more anisotropy, thus to present a better alignment between the tensors. The Boussinesq constitutive relation is rarely valid, but the QCR tends to improve the alignment. The improvement is mainly present at the inlet, upstream of the corner separation. At the outlet, the correction is milder. The eddy-viscosity built with the LES results are of the same order of magnitude as those built as the ratio of the turbulent kinetic energy k and the turbulence specific dissipation rate ω. They also show that the main impact of the QCR is to rotate the mean strain-rate tensor in order to realign it with the Reynolds stress tensor, without dilating it.

1999 ◽  
Vol 122 (1) ◽  
pp. 48-50 ◽  
Author(s):  
J. Jovanovic´ ◽  
I. Otic´

The constitutive relation for the Reynolds stress tensor is considered for turbulence developing in axisymmetric strain fields. It is confirmed that the Reynolds stress tensor is aligned linearly with the mean strain rate. In contrast to the Prandtl-Kolmogorov, hypothesis, the effective viscosity is found to grow in proportion to the anisotropy of turbulence and the length scale based on the magnitude of the mean strain rate. Using invariant theory the effective viscosity is determined for the limiting states of turbulence. Additional analysis of the constitutive relations is supplemented for the dissipation and pressure-strain correlations. It is shown that analytical derivations are in excellent agreement with the data obtained from direct numerical simulations. [S0098-2202(00)02801-7]


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Igor Vigdorovich ◽  
Holger Foysi

The purpose of this paper is to establish the admitted region for five simultaneous, functionally independent invariants of the strain rate tensorSand rotation rate tensorΩand calculate some simultaneous invariants of these tensors which are encountered in the theory of constitutive relations for turbulent flows. Such a problem, as far as we know, has not yet been considered, though it is obviously an integral part of any problem in which scalar functions of the tensorsSandΩare studied. The theory provided inside this paper is the building block for a derivation of new algebraic constitutive relations for three-dimensional turbulent flows in the form of expansions of the Reynolds-stress tensor in a tensorial basis formed by the tensorsSandΩ, in which the scalar coefficients depend on simultaneous invariants of these tensors.


2021 ◽  
Vol 5 ◽  
pp. 50-65
Author(s):  
Wei Sun ◽  
Liping Xu

In this paper, an investigation into the effect of explicit non-linear turbulence modelling on anisotropic turbulence flows is presented. Such anisotropic turbulence flows are typified in the corner separations in turbomachinery. The commonly used Reynolds-Averaged Navier-Stokes (RANS) turbulence closures, in which the Reynolds stress tensor is modelled by the Boussinesq (linear) constitutive relation with the mean strain-rate tensor, often struggle to predict corner separation with reasonable accuracy. The physical reason for this modelling deficiency is partially attributable to the Boussinesq hypothesis which does not count for the turbulence anisotropy, whilst in a corner separation, the flow is subject to three-dimensional (3D) shear and the effects due to turbulence anisotropy may not be ignored. In light of this, an explicit non-linear Reynolds stress-strain constitutive relation developed by Menter et al. is adopted as a modification of the Reynolds-stress anisotropy. Coupled with the Menter’s hybrid "k-ω" ⁄"k-ε" turbulence model, this non-linear constitutive relation gives significantly improved predictions for the corner separation flows within a compressor cascade, at both the design and off-design flow conditions. The mean vorticity field are studied to further investigate the physical reasons for these improvements, highlighting its potential for the widespread applications in the corner separation prediction.


2012 ◽  
Vol 709 ◽  
pp. 1-36 ◽  
Author(s):  
R. J. Belt ◽  
A. C. L. M. Daalmans ◽  
L. M. Portela

AbstractIn fully developed single-phase turbulent flow in straight pipes, it is known that mean motions can occur in the plane of the pipe cross-section, when the cross-section is non-circular, or when the wall roughness is non-uniform around the circumference of a circular pipe. This phenomenon is known as secondary flow of the second kind and is associated with the anisotropy in the Reynolds stress tensor in the pipe cross-section. In this work, we show, using careful laser Doppler anemometry experiments, that secondary flow of the second kind can also be promoted by a non-uniform non-axisymmetric particle-forcing, in a fully developed turbulent flow in a smooth circular pipe. In order to isolate the particle-forcing from other phenomena, and to prevent the occurrence of mean particle-forcing in the pipe cross-section, which could promote a different type of secondary flow (secondary flow of the first kind), we consider a simplified well-defined situation: a non-uniform distribution of particles, kept at fixed positions in the ‘bottom’ part of the pipe, mimicking, in a way, the particle or droplet distribution in horizontal pipe flows. Our results show that the particles modify the turbulence through ‘direct’ effects (associated with the wake of the particles) and ‘indirect’ effects (associated with the global balance of momentum and the turbulence dynamics). The resulting anisotropy in the Reynolds stress tensor is shown to promote four secondary flow cells in the pipe cross-section. We show that the secondary flow is determined by the projection of the Reynolds stress tensor onto the pipe cross-section. In particular, we show that the direction of the secondary flow is dictated by the gradients of the normal Reynolds stresses in the pipe cross-section, $\partial {\tau }_{rr} / \partial r$ and $\partial {\tau }_{\theta \theta } / \partial \theta $. Finally, a scaling law is proposed, showing that the particle-driven secondary flow scales with the root of the mean particle-forcing in the axial direction, allowing us to estimate the magnitude of the secondary flow.


1998 ◽  
Vol 120 (2) ◽  
pp. 280-284 ◽  
Author(s):  
A. Mazouz ◽  
L. Labraga ◽  
C. Tournier

The present study shows that the Reynolds stress anisotropy tensor for turbulent flow depends both on the nature of the surface and the boundary conditions of the flow. Contrary to the case of turbulent boundary layers with k-type surface roughness, the measured anisotropy invariants of the Reynolds stress tensor over a series of spanwise square bars separated by rectangular cavities (k-type) in duct flows show that roughness increases the anisotropy. There is a similarity between the effect of roughness on channel flow turbulence and that on pipe flow turbulence. The present data show that the effect of introducing a surface roughness significantly perturbs the entire thickness of the turbulent flow.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Yangwei Liu ◽  
Yumeng Tang ◽  
Ashley D. Scillitoe ◽  
Paul G. Tucker

Abstract Three-dimensional corner separation significantly affects compressor performance, but turbulence models struggle to predict it accurately. This paper assesses the capability of the original shear stress transport (SST) turbulence model to predict the corner separation in a linear highly loaded prescribed velocity distribution (PVD) compressor cascade. Modifications for streamline curvature, Menter’s production limiter, and the Kato-Launder production term are examined. Comparisons with experimental data show that the original SST model and the SST model with different modifications can predict the corner flow well at an incidence angle of −7 deg, where the corner separation is small. However, all the models overpredict the extent of the flow separation when the corner separation is larger, at an incidence angle of 0 deg. The SST model is then modified using the helicity to take account of the energy backscatter, which previous studies have shown to be important in the corner separation regions of compressors. A Reynolds stress model (RSM) is also used for comparison. By comparing the numerical results with experiments and RSM results, it can be concluded that sensitizing the SST model to helicity can greatly improve the predictive accuracy for simulating the corner separation flow. The accuracy is quite competitive with the RSM, whereas in terms of computational cost and robustness it is superior to the RSM.


Sign in / Sign up

Export Citation Format

Share Document