An Experimental Investigation of Full-Coverage Film Cooling Characteristics of a Turbine Guide Vane

Author(s):  
Jin Wu ◽  
Li Zhang ◽  
Li-jian Cheng ◽  
Ru Jiang ◽  
Zhong-yi Fu ◽  
...  

This paper researches on the effects of Reynolds number and mass flow ratio on the film cooling characteristics at high turbulence intensity (Tu = 15%). The experiment adopted an actual three-dimensional twisted vane and presents the film cooling characteristics on full-coverage film surface in a two-passage, linear cascade. The cooling effectiveness and heat transfer coefficient of the vane’s whole surface were obtained by using transient liquid crystal measurement technique. The transient liquid crystal is SPN/R35C1W, whose bandwidth is 2°C. There are fifteen rows of film cooling holes which have different diameter, injection angle and yaw angle. The secondary flow was supplied by two cavities. The front cavity supplied the secondary flow to thirteen rows of film cooling holes that were arranged in the suction surface, the leading edge and the front half of the pressure surface. The rear cavity supplied the secondary flow to the rear half of pressure surface which included two rows of film cooling holes. The investigated parameters are Reynolds number of 1 × 105, 1.3 × 105 and 1.6 × 105 and the mass flow ratio of MFR = 5.5%∼12.5% (6 cases). The data recorded in the experiment was analyzed with MATLAB. Results show that the combined effects of mass flow ratio and channel vortex are the maintain reasons that influence the distribution of cooling effectiveness in the contour. Increasing the mass flow ratio can improve the film cooling effectiveness on leading edge and pressure surface, while that presents complex rule on suction surface. Increasing the Reynolds number can improve the heat transfer coefficient at the same mass flow ratio. When increasing the mass flow ratio, the heat transfer coefficient increases on leading edge and pressure surface at Re = 1.6 × 105. However, the decreases at film hole outlet region on the suction side, and not obviously changes at the film hole downstream region.

Author(s):  
Zhiqiang Yu ◽  
Jianjun Liu ◽  
Chen Li ◽  
Baitao An

Abstract Numerical investigations have been performed to study the effect of incidence angle on the aerodynamic and film cooling performance for the suction surface squealer tip with different film-hole arrangements at τ = 1.5% and BR = 1.0. Meanwhile, the full squealer tip as baseline is also investigated. Three incidence angles at design condition (0 deg) and off-design conditions (± 7 deg) are investigated. The suction surface, pressure surface, and the camber line have seven holes each, with an extra hole right at the leading edge. The Mach number at the cascade inlet and outlet are 0.24 and 0.52, respectively. The results show that the incidence angle has a significant effect on the tip leakage flow characteristics and coolant flow direction. The film cooling effectiveness distribution is altered, especially for the film holes near the leading edge. When the incidence angle changes from +7 deg to 0 and −7 deg, the ‘re-attachment line’ moves downstream and the total tip leakage mass flow ratio decreases, but the suction surface tip leakage mass flow ratio near leading edge increases. In general, the total tip leakage mass flow ratio for suction surface squealer tip is 1% greater than that for full squealer tip at the same incidence angle. The total pressure loss coefficient of suction surface squealer tip is larger than that for full squealer tip. The full squealer tip with film holes near suction surface and the suction surface squealer tip with film hole along camber line show high film cooling performance, and the area averaged film cooling effectiveness at positive incidence angle +7 deg is higher than that at 0 and −7 deg. The coolant discharged from film holes near pressure surface only cools narrow region near pressure surface.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Marc Fraas ◽  
Tobias Glasenapp ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer

Internal coolant passages of gas turbine vanes and blades have various orientations relative to the external hot gas flow. As a consequence, the inflow of film cooling holes varies as well. To further identify the influencing parameters of film cooling under varying inflow conditions, the present paper provides detailed experimental data. The generic study is performed in a novel test rig, which enables compliance with all relevant similarity parameters including density ratio. Film cooling effectiveness as well as heat transfer of a 10–10–10 deg laidback fan-shaped cooling hole is discussed. Data are processed and presented over 50 hole diameters downstream of the cooling hole exit. First, the parallel coolant flow setup is discussed. Subsequently, it is compared to a perpendicular coolant flow setup at a moderate coolant channel Reynolds number. For the perpendicular coolant flow, asymmetric flow separation in the diffuser occurs and leads to a reduction of film cooling effectiveness. For a higher coolant channel Reynolds number and perpendicular coolant flow, asymmetry increases and cooling effectiveness is further decreased. An increase in blowing ratio does not lead to a significant increase in cooling effectiveness. For all cases investigated, heat transfer augmentation due to film cooling is observed. Heat transfer is highest in the near-hole region and decreases further downstream. Results prove that coolant flow orientation has a severe impact on both parameters.


Author(s):  
Vijay K. Garg ◽  
Raymond E. Gaugler

An existing three-dimensional Navier-Stokes code (Arnone et al., 1991), modified to include film cooling considerations (Garg and Gaugler, 1994), has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d = 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.


Author(s):  
Wei He ◽  
Qinghua Deng ◽  
Juan He ◽  
Tieyu Gao ◽  
Zhenping Feng

Abstract A novel internal cooling structure has been raised recently to enhance internal cooling effectiveness and reduce coolant requirement without using film cooling. This study mainly focuses on verifying the actual cooling performance of the structure and investigating the heat transfer mechanism of the leading edge part of the structure, named bended channel cooling. The cooling performances of the first stage of GE-E3 turbine with three different blade leading edge cooling structures (impingement cooling, swirl cooling and bended channel cooling) were simulated using the conjugate heat transfer method. Furthermore, the effects of jetting orifice geometry and channel Reynolds number were studied with simplified models to illustrate the flow and heat transfer characteristics of the bended channel cooling. The results show that the novel internal cooling structure has obvious advantages on the blade leading edge and suction side under operating condition. The vortex core structure in the bended channel depends on orifice width, but not channel Reynolds number. With the ratio of orifice width to outer wall thickness smaller than a critical value of 0.5, the coolant flows along the external surface of the channel in the pattern of “inner film cooling”, which is pushed by centrifugal force and minimizes the mixing with spent cooling air. Namely, the greatly organized coolant flow generates higher cooling effectiveness and lower coolant demand. Both the Nusselt number on the channel surfaces and total pressure loss increase significantly when the orifice width falls or channel Reynolds increases, but the wall jet impingement distance appears to be less influential.


2021 ◽  
Author(s):  
Kun Xiao ◽  
Juan He ◽  
Zhenping Feng

Abstract This paper proposed an alternating elliptical film hole for gas turbine blade to restrain kidney vortex and enhance film cooling effectiveness, based on the multi-longitudinal vortexes generated in alternating elliptical tube. The detailed flow structures in film hole delivering tube and out of the film hole, adiabatic film cooling effectiveness distributions as well as the total pressure loss coefficient were investigated. The delivering tube of alternating elliptical film hole consists of two straight sections and a transition section. In the straight sections, the cross section of the film hole is elliptical, and in the transition section, along flow direction, the major axis gradually shortened into the minor axis, and the minor axis gradually expanded to the major axis. But, the cross-section area of the film hole kept constant. Numerical simulations were performed by using 3D steady flow solver of Reynolds-averaged Navier-Stokes equations (RANS) with the SST k-ω turbulence model. To reveal the mechanism of kidney vortex suppression and film cooling effectiveness enhancement, the simulation results were compared with the cylindrical film hole set as the baseline at different mass flow ratios (MFR). Besides, the aerodynamic characteristics of these two kinds of film holes were also investigated. The results showed that obvious jet effect could be found in the cylindrical film hole, and the coolant mainly flowed along the upper wind wall, then interacted with the main flow, forming a strong kidney vortex after flowing out, which made the coolant to lift away from the wall surface and reduced the cooling effectiveness. The alternating elliptical film hole had a good inhibition impact on the jet effect in the hole due to the longitudinal vortices, which made the film adhere to the wall surface better after the coolant flowed out. The longitudinal vortices generated by alternating elliptical film hole have the opposite rotation direction to the vorticity of the kidney vortices, thus the kidney vortices were restrained to a certain extent. The height of kidney vortices is lower, and the size of kidney vortices is also smaller. As a result, the film cooling effectiveness of alternating elliptical film hole is distinctly higher than that of the cylindrical film hole, and the enhancement effect is more significant at higher mass flow ratio. In addition, the total pressure loss coefficient of alternating elliptical film hole is only slightly higher than the cylindrical film hole at the mass flow ratio of 1%, 2% and 3%, and is even lower at the mass flow ratio of 4%, thus inducing an excellent comprehensive performance.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Chao Zhou ◽  
Howard Hodson ◽  
Ian Tibbott ◽  
Mark Stokes

In a gas turbine, the casing endwall moves relative to the blades. In this paper, numerical methods are first validated using experimental results for a stationary endwall. They are then used to study the effects of endwall motion on the aero-thermal performance of both winglet tips with and without tip film cooling at a tip gap of 1.9% C. The endwall motion imposes a tangential force on the flow. A scraping vortex is formed and the flow pattern within the tip gap changes significantly. The tip leakage mass flow rate that exits the tip gap from the suction side edge reduces by about 42% with endwall motion. Overall, the endwall motion reduces the tip leakage loss by 15%. The flow field downstream of the cascade also changes with endwall motion. With endwall motion, the changed flow pattern within the tip gap significantly changes the distribution of the Nusselt number on the winglet tip. For the winglet tip without tip film cooling, the Nusselt number and the heat load decrease with endwall motion. This is mainly due to the reduction in the tip leakage mass flow ratio, which reduces the leakage velocity over the tip. On the winglet tip with tip film cooling, the cooling effectiveness increases by 9% with endwall motion. Combined with the reduced Nusselt number, the heat flux on the winglet tip with tip film cooling reduces by 31% with endwall motion. The cooling effectiveness on the near tip region of the pressure side remains almost unchanged, however, the heat flux rate in this area reduces. This is because the reduced tip leakage mass flow ratio reduces the Nusselt number. With the moving endwall, the thermal performance of the suction side surface of the blade is affected by the scraping vortex. The effects of endwall motion should be considered during the design of the blade tip.


Author(s):  
Shichuan Ou ◽  
Richard Rivir ◽  
Matthew Meininger ◽  
Fred Soechting ◽  
Martin Tabbita

This paper studies the film effectiveness and heat transfer coefficients on a large scale symmetric circular leading edge with three rows of film holes. The film hole configuration focuses on a smaller injection angle of 20° and a larger hole pitch with respect to the hole diameter (P/d = 7.86). The study includes four blowing ratios (M = 1.0, 1.5, 2.0 and 2.5), two Reynolds numbers (Re = 30,000 and 60,000), and two free stream turbulence levels (approximately Tu = 1% and 20% depending on the Reynolds number). The method used to obtain the film cooling effectiveness and the heat transfer coefficient in the experiment is a transient liquid crystal technique. The distributions of film effectiveness and heat transfer coefficient are obtained with spatial resolutions of about 0.6 mm or 13% of the film cooling hole diameter. Results are presented for detailed and spanwise averaged values of film effectiveness and Frössling number. Blowing ratios investigated result in up to 2.8 times the lowest blowing ratio’s film effectiveness. Increasing the Reynolds number from 30,000 to 60,000 results in increasing the effectiveness by up to 55% at high turbulence. Turbulence intensity has up to a 60% attenuation on effectiveness between rows at Re = 30,000. The turbulence intensity has the same order of magnitude but opposite effect as Reynolds number, which also has the same order of magnitude effect as blowing ratio on the film effectiveness. A crossover from attenuation to improved film effectiveness after the second row of film holes is found for the high turbulence case as blowing ratio increases. The blowing ratio of two shows a spatial coupling of the stagnation row of film holes with the second row (21.5°) of film holes which results in the highest film effectiveness and also the highest Frössling numbers.


Author(s):  
Chao Zhou ◽  
Howard Hodson ◽  
Ian Tibbott ◽  
Mark Stokes

In a gas turbine, the casing endwall moves relative to the blades. In this paper, numerical methods are first validated using experimental results for a stationary endwall. They are then used to study the effects of endwall motion on the aero-thermal performance of both winglet tips with and without tip film cooling at a tip gap of 1.9%C. The endwall motion imposes a tangential force on the flow. A scraping vortex is formed and the flow pattern within the tip gap, changes significantly. The tip leakage mass flow rate that exits the tip gap from the suction side edge reduces by about 42% with endwall motion. Overall, the endwall motion reduces the tip leakage loss by 15%. The flow field downstream of the cascade also changes with endwall motion. With endwall motion, the changed flow pattern within the tip gap significantly changes the distribution of the Nusselt number on the winglet tip. For the winglet tip without tip film cooling, the Nusselt number and the heat load decrease with endwall motion. This is mainly due to the reduction in the tip leakage mass flow ratio, which reduces the leakage velocity over the tip. On the winglet tip with tip film cooling, the cooling effectiveness increases by 9% with endwall motion. Combined with the reduced Nusselt number, the heat flux on the winglet tip with tip film cooling reduces by 31% with endwall motion. The cooling effectiveness on the near tip region of the pressure side remains almost unchanged, but the heat flux rate in this area reduces. This is because the reduced tip leakage mass flow ratio reduces the Nusselt number. With the moving endwall, the thermal performance of the suction side surface of the blade is affected by the scraping vortex. The effects of endwall motion should be considered during the design of the blade tip.


2011 ◽  
Vol 383-390 ◽  
pp. 3963-3968
Author(s):  
Shao Hua Li ◽  
Li Mei Du ◽  
Wen Hua Dong ◽  
Ling Zhang

In this paper, a numerical simulation was performed to investigate heat transferring characteristics on the leading edge of a blade with three rows of holes of film-cooling using Realizable k- model. Three rows of holes were located on the suction side leading edge stagnation line and the pressure surface. The difference of the cooling efficiency and the heat transfer of the three rows of holes on the suction side and pressure side were analyzed; the heat transfer and film cooling effectiveness distribution in the region of leading edge are expounded under different momentum rations.The results show that under the same condition, the cooling effectiveness on the pressure side is more obvious than the suction side, but the heat transfer is better on the suction side than the pressure side. The stronger momentum rations are more effective cooling than the heat transfer system.


Author(s):  
A. Nikparto ◽  
T. Rice ◽  
M. T. Schobeiri

The current study investigates the heat transfer and film-cooling effectiveness on a highly loaded turbine blade under steady and periodic unsteady wake induced flow conditions from both experimental and numerical simulation points of view. For the experimental measurements, the cascade facility in Turbomachinery Performance and Flow Research Lab (TPFL) at Texas A&M University was used to simulate the periodic unsteady flow condition inside gas turbine engines. The current paper includes steady and unsteady inlet flow conditions. Moving wakes, originated from upstream stator blades, are simulated inside the cascade facility by moving rods in front of the blades. The flow coefficient is maintained at 0.8 and the incoming wakes have a reduced frequency of 3.18. For film-cooling effectiveness study a special blade was designed and inserted into the cascade facility that has a total of 617 holes distributed along 13 different rows on the blade surfaces. 6 rows cover the suction side, 6 other rows cover the pressure side and one last row feeds the leading edge. There are six coolant cavities inside the blade. Each cavity is connected to one row on either sides of the blade, except for the closest cavity to leading edge since it is connected to the leading edge row as well. The rows that are connected to the same cavity have identical injection hole numbers, arrangement (except for leading edge) and compound angles. Coolant is injected from either sides of the blade through the 6 cavities to form a uniform distribution along the lateral extent of the blade. In order to increase the effectiveness, the coolant injection holes are shaped holes. In the regions close to the end-walls of the cascade the holes have compound angles to overcome the effects of horseshoe and passage vortices. To study the film cooling effectiveness, the blade surfaces were covered with Pressure Sensitive Paint (PSP) excited with green light. Experiments were performed for Reynolds number of 150,000 and the average blowing ratio of coolant was maintained at one for all rows throughout the experiments. For heat transfer coefficient measurements, the liquid crystal method was used. For that reason the surfaces of the blade were covered by liquid crystal sheets and it was tested at the same Reynolds number. As computational platform, a RANS based solver was selected for this study. Sliding mesh technique was incorporated into the simulations to produce moving wakes. Experimental and numerical investigations were performed to determine the effect of flow separation, and pressure gradient on film-cooling effectiveness in the absence of wakes. Moreover, the effect of impinging wakes on the overall film coverage of blade surfaces and heat transfer coefficient was studied. Comparison of numerical and experimental results reveals deficiencies of numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document