Performance Assessment of an Integrated Parallel Hybrid-Electric Propulsion System Aircraft

Author(s):  
Smruti Sahoo ◽  
Xin Zhao ◽  
Konstantinos G. Kyprianidis ◽  
Anestis Kalfas

Abstract Hybrid-electric propulsion system promises avenues for a greener aviation sector. Ground research work was performed in the past for the feasibility assessment, at the system level, for such novel concepts and the results showed were promising. Such designs, however, possess unique challenges from an operational point of view, and for sizing of the sub-system components; necessitating further design space exploration for associating with an optimal operational strategy. In light of the above, the paper aims at presenting an operational analysis and performance assessment study, for a conceptualised parallel hybrid design of an advanced geared turbofan engine, based on 2035 timeframe technology level. It is identified that the hybrid power operation of the engine is constrained with respect to the requirement of maintaining an adequate surge margin for the low pressure side components; however, a core re-optimised engine design with consideration of electrical power add-in for the design condition, relieves such limit. Therefore such a design, makes it suitable for implementation of higher degree of hybridisation. Furthermore, performance assessment is made both at engine and engine-aircraft integrated level for both scenarios of hybrid operation and the benefits are established relative to the baseline engine. The performance at engine level engine specific fuel consumption (SFC), thrust specific power consumption (TSPC), and overall efficiency, shows improvement in both hybridised scenarios. Improvement in SFC is achieved due to supply of the electrical power, whereas, the boost in TSPC, and overall efficiency is attributed to the use of higher efficiency electrical drive system. Furthermore, it is observed that while the hybridised scenario performs better at engine level, the core re-optimised design exhibits a better saving for block fuel/energy consumption, due to the considerable weight savings in the core components.

Author(s):  
Merijn Rembrandt van Holsteijn ◽  
Arvind Gangoli Rao ◽  
Feijia Yin

Abstract With the growing pressure to reduce the environmental footprint of aviation, new and efficient propulsion systems must be investigated. The current research looks at the operating characteristics of a turbofan engine in a parallel hybrid-electric propulsion system. Electric motors are used to supply power in the most demanding take-off and climb phases to achieve the required thrust, which allows the turbofan to be redesigned to maximize the cruise performance (to some extent). It was found that the turbofan’s cruise efficiency can be improved by 1.0% by relaxing the constraints of take-off and climb. It was found that the surge margins of compressors limit the amount of power that could be electrically supplied. On a short-range mission, the hybrid-electric propulsion system showed a potential to reduce around 7% of fuel burn on an A320 class aircraft. Most of these savings are however achieved due to fully electric taxiing. The weight of the electrical propulsion system largely offsets the efficiency improvements of the gas turbine during cruise flight. A system dedicated for fully electric taxiing system could provide similar savings, at less effort and costs. Given the optimistic technology levels used in the current analysis, parallel hybrid-electric propulsion is not likely to be used in the next-generation short to medium range aircraft.


2019 ◽  
Vol 92 (5) ◽  
pp. 727-736
Author(s):  
Leonardo Machado ◽  
Jay Matlock ◽  
Afzal Suleman

Purpose This paper aims to experimentally evaluate the performance of a parallel hybrid propulsion system for use in small unmanned aerial vehicles (UAVs). Design/methodology/approach The objective is to combine all the individual components of the hybrid electric propulsion system (HEPS) into a modular test bench to characterize the performance of a parallel hybrid propulsion system, and to evaluate a rule-based controller based on the ideal operating line concept for the control of the power plant. Electric motor (EM) designed to supplement the power of the internal combustion engine (ICE) to reduce the overall fuel consumption, with the supervisory controller optimizing ICE torque. Findings The EM was able to supplement the power of the ICE to reduce fuel consumption, and proved the capability of acting as a generator to recharge the batteries drawing from ICE power. Furthermore, the controller showed that it is possible to reduce the fuel consumption with a HEPS when compared to its gasoline counterpart by running simulated representative UAV missions. The findings also highlighted the challenges to build and integrate the HEPS in small UAVs. Originality/value The modularity of the test bench allows each component to be changed to assess its impact on the performance of the system. This allows for further exploration and improvements of the HEPS in a controlled environment.


2021 ◽  
Vol 9 (2) ◽  
pp. 186
Author(s):  
Francesco Mauro ◽  
Elia Ghigliossi ◽  
Vittorio Bucci ◽  
Alberto Marinó

Nowadays, sustainable navigation is becoming a trending topic not only for merchant ships but also for pleasure vessels such as motoryachts. Therefore, the adoption of a hybrid-electric propulsion system and the installation of on-board storage devices could increase the greenness of a megayacht. This paper analyses the performance of three commercial propulsive solutions, using a dynamic operative profile and considering the influences of the smart berthing infrastructures. Results compare the yearly fuel consumptions of the analysed configurations for a reference megayacht.


Sign in / Sign up

Export Citation Format

Share Document