Energy and Exergy Analysis of a Gas Turbine Power Plant Integrated With Vapor Adsorption Refrigeration System

Author(s):  
Sanchit Agarwal ◽  
Darshika Gupta ◽  
Devendra Dandotiya ◽  
Nitin D. Banker

Abstract In the step towards the utilization of waste energy of Gas Turbine (GT) power plant exhaust gas, researchers have imposed adsorption refrigeration system over the absorption refrigeration due to several positive advantages. In the reported work, the system was analyzed based on first law efficiency. However, combining heat and work together for an evaluating system using first law efficiency would not provide a true picture of the performance of the system, whereas second law efficiency shows various irreversibilities associated with each component of the system and helpful in obtaining the optimum conversion of energy. In view of this, the presented paper studies performance analysis of GT power plant incorporated with the adsorption refrigeration system. Based on the parameters such as energy and exergetic efficiencies, cooling to power ratio and exergetic specific fuel consumption are considered for the system performance evaluation.

Author(s):  
Henry Egware ◽  
Albert I. Obanor ◽  
Harrison Itoje

Energy and exergy analyses were carried out on an active 42MW open cycle gas turbine power plant. Data from the power plant record book were employed in the investigation. The First and Second Laws of Thermodynamics were applied to each component of the gas power plant at ambient air temperature range of 21 - 330C. Results obtained from the analyses show that the energy and exergy efficiencies decrease with increase in ambient air temperature entering the compressor. It was also shown that 66.98% of fuel input and 54.53% of chemical exergy are both lost to the environment as heat from the combustion chamber in the energy and exergy analysis respectively. The energy analysis quantified the efficiency of the plant arising from energy losses , while exergy analysis revealed the magnitude of losses in various components of the plant. Therefore a complete thermodynamic evaluation of gas turbine power plants requires the use of both analytical methods.


Sign in / Sign up

Export Citation Format

Share Document