scholarly journals Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods

2020 ◽  
Vol 20 ◽  
pp. 100679 ◽  
Author(s):  
Faustino Moreno-Gamboa ◽  
Ana Escudero-Atehortua ◽  
César Nieto-Londoño
2014 ◽  
Vol 79 ◽  
pp. 431-440 ◽  
Author(s):  
S.O. Oyedepo ◽  
R.O. Fagbenle ◽  
S.S. Adefila ◽  
S.A. Adavbiele

Author(s):  
Henry Egware ◽  
Albert I. Obanor ◽  
Harrison Itoje

Energy and exergy analyses were carried out on an active 42MW open cycle gas turbine power plant. Data from the power plant record book were employed in the investigation. The First and Second Laws of Thermodynamics were applied to each component of the gas power plant at ambient air temperature range of 21 - 330C. Results obtained from the analyses show that the energy and exergy efficiencies decrease with increase in ambient air temperature entering the compressor. It was also shown that 66.98% of fuel input and 54.53% of chemical exergy are both lost to the environment as heat from the combustion chamber in the energy and exergy analysis respectively. The energy analysis quantified the efficiency of the plant arising from energy losses , while exergy analysis revealed the magnitude of losses in various components of the plant. Therefore a complete thermodynamic evaluation of gas turbine power plants requires the use of both analytical methods.


Author(s):  
Sanchit Agarwal ◽  
Darshika Gupta ◽  
Devendra Dandotiya ◽  
Nitin D. Banker

Abstract In the step towards the utilization of waste energy of Gas Turbine (GT) power plant exhaust gas, researchers have imposed adsorption refrigeration system over the absorption refrigeration due to several positive advantages. In the reported work, the system was analyzed based on first law efficiency. However, combining heat and work together for an evaluating system using first law efficiency would not provide a true picture of the performance of the system, whereas second law efficiency shows various irreversibilities associated with each component of the system and helpful in obtaining the optimum conversion of energy. In view of this, the presented paper studies performance analysis of GT power plant incorporated with the adsorption refrigeration system. Based on the parameters such as energy and exergetic efficiencies, cooling to power ratio and exergetic specific fuel consumption are considered for the system performance evaluation.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 705
Author(s):  
Thodsaphon Jansaengsuk ◽  
Mongkol Kaewbumrung ◽  
Wutthikrai Busayaporn ◽  
Jatuporn Thongsri

To solve the housing damage problem of a fractured compressor blade (CB) caused by an impact on the inner casing of a gas turbine in the seventh stage (from 15 stages), modifications of the trailing edge (TE) of the CB have been proposed, namely 6.5 mm curved cutting and a combination of 4 mm straight cutting with 6.5 mm curved cutting. The simulation results of the modifications in both aerodynamics variables Cl and Cd and the pressure ratio, including structural dynamics such as a normalized power spectrum, frequency, total deformation, equivalent stress, and the safety factor, found that 6.5 mm curved cutting could deliver the aerodynamics and structural dynamics similar to the original CB. This result also overcomes the previous work that proposed 5.0 mm straight cutting. This work also indicates that the operation of a CB gives uneven pressure and temperature, which get higher in the TE area. The slightly modified CB can present the difference in the properties of both the aerodynamics and the structural dynamics. Therefore, any modifications of the TE should be investigated for both properties simultaneously. Finally, the results from this work can be very useful information for the modification of the CB in the housing damage problem of the other rotating types of machinery in a gas turbine power plant.


Sign in / Sign up

Export Citation Format

Share Document