Atomistic Simulations of G-Type Phonons in Silicon Devices

Volume 4 ◽  
2004 ◽  
Author(s):  
Sanjiv Sinha ◽  
P. K. Schelling ◽  
S. R. Phillpot ◽  
K. E. Goodson

Heat conduction in highly compact silicon transistors is impeded due to localization of the electronically generated heat in the device drain. This work studies phonon transport from such heat sources using parallel molecular dynamics. Device Monte Carlo calculations provide an estimate of the size and energy density of the phonon source which is embedded in a one-dimensional crystal. We calculate the scattering times and decay channels for the excited phonons in the absence of thermal phonons. The hotspot is evolved in time and resulting atomic displacements are Fourier analyzed for various phonon modes. Simulations show that decay channels differ depending on the initial energy density of the hotspot. This approach provides a novel method of extracting anharmonic phonon scattering rates for non-equilibrium conditions in a transistor, where first order perturbation theory based calculations may be inaccurate.

2015 ◽  
Vol 1117 ◽  
pp. 86-89 ◽  
Author(s):  
Hiroya Ikeda ◽  
Takuro Oda ◽  
Yuhei Suzuki ◽  
Yoshinari Kamakura ◽  
Faiz Salleh

The Seebeck coefficient of P-doped ultrathin Si-on-insulator (SOI) layers is investigated for the application to a highly-sensitive thermopile infrared photodetector. It is found that the Seebeck coefficient originating from the phonon drag is significant in the lightly doped region and depends on the carrier concentration with increasing carrier concentration above ~5×1018 cm-3. On the basis of Seebeck coefficient calculations considering both electron and phonon distribution, the phonon-drag part of SOI Seebeck coefficient is mainly governed by the phonon transport, in which the phonon-phonon scattering process is dominant rather than the crystal boundary scattering even in the SOI layer with a thickness of 10 nm. This fact suggests that the phonon-drag Seebeck coefficient is influenced by the phonon modes different from the thermal conductivity.


Author(s):  
Mate Csanad ◽  
Tamas Csorgo ◽  
Ze-Fang Jiang ◽  
Chun-Bin Yang

Accelerating, exact, explicit and simple solutions of relativistic hydrodynamics allow for a simple and natural description of highly relativistic p+p collisions. These solutions yield a finite rapidity distribution, thus they lead to an advanced estimate of the initial energy density of high energy collisions. We show that such an advanced estimate yields an initial energy density in $\sqrt{s}=7$ and 8 TeV p+p collisions at LHC around or above the critical energy density from lattice QCD, and a corresponding initial temperature above the critical temperature from QCD and the Hagedorn temperature. This suggests that the collision energy of the LHC corresponds to a large enough initial energy density to create a non-hadronic perfect fluid even in pp collisions. %We also show, that several times the %critical energy density may have been reached in high multiplicity events, hinting at a non-hadronic medium created in %high multiplicity $\sqrt{s}=7$ and 8 TeV p+p collisions.


Universe ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. 9 ◽  
Author(s):  
Máté Csanád ◽  
Tamás Csörgő ◽  
Ze-Fang Jiang ◽  
Chun-Bin Yang

1988 ◽  
Vol 214 (4) ◽  
pp. 657-659 ◽  
Author(s):  
G.N. Fowler ◽  
F.S. Navarra ◽  
M. Plümer ◽  
A. Vourdas ◽  
R.M. Weiner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document