critical energy density
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 227
Author(s):  
Kirill Khabarov ◽  
Messan Nouraldeen ◽  
Sergei Tikhonov ◽  
Anna Lizunova ◽  
Olesya Seraya ◽  
...  

In this paper, we investigated the interaction of nanosecond pulsed-periodic infrared (IR) laser radiation at a 50 and 500 Hz repetition rate with aerosol platinum (Pt) and silver (Ag) nanoparticles agglomerates obtained in a spark discharge. Results showed the complete transformation of Pt dendrite-like agglomerates with sizes of 300 nm into individual spherical nanoparticles directly in a gas flow under 1053 nm laser pulses with energy density 3.5 mJ/cm2. Notably, the critical energy density required for this process depended on the size distribution and extinction of agglomerates nanoparticles. Based on the extinction cross-section spectra results, Ag nanoparticles exhibit a weaker extinction in the IR region in contrast to Pt, so they were not completely modified even under the pulses with energy density up to 12.7 mJ/cm2. The obtained results for Ag and Pt laser sintering were compared with corresponding modification of gold (Au) nanoparticles studied in our previous work. Here we considered the sintering mechanisms for Ag, Pt and Au nanoparticles agglomerates in the aerosol phase and proposed the model of their laser sintering based on one-stage for Pt agglomerates and two-stage shrinkage processes for Au and Ag agglomerates.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 327
Author(s):  
Gabriele Barca ◽  
Eleonora Giovannetti ◽  
Giovanni Montani

We present a review on some of the basic aspects concerning quantum cosmology in the presence of cut-off physics as it has emerged in the literature during the last fifteen years. We first analyze how the Wheeler–DeWitt equation describes the quantum Universe dynamics, when a pure metric approach is concerned, showing how, in general, the primordial singularity is not removed by the quantum effects. We then analyze the main implications of applying the loop quantum gravity prescriptions to the minisuperspace model, i.e., we discuss the basic features of the so-called loop quantum cosmology. For the isotropic Universe dynamics, we compare the original approach, dubbed the μ0 scheme, and the most commonly accepted formulation for which the area gap is taken as physically scaled, i.e., the so-called μ¯ scheme. Furthermore, some fundamental results concerning the Bianchi Universes are discussed, especially with respect to the morphology of the Bianchi IX model. Finally, we consider some relevant criticisms developed over the last ten years about the real link existing between the full theory of loop quantum gravity and its minisuperspace implementation, especially with respect to the preservation of the internal SU(2) symmetry. In the second part of the review, we consider the dynamics of the isotropic Universe and of the Bianchi models in the framework of polymer quantum mechanics. Throughout the paper, we focus on the effective semiclassical dynamics and study the full quantum theory only in some cases, such as the FLRW model and the Bianchi I model in the Ashtekar variables. We first address the polymerization in terms of the Ashtekar–Barbero–Immirzi connection and show how the resulting dynamics is isomorphic to the μ0 scheme of loop quantum cosmology with a critical energy density of the Universe that depends on the initial conditions of the dynamics. The following step is to analyze the polymerization of volume-like variables, both for the isotropic and Bianchi I models, and we see that if the Universe volume (the cubed scale factor) is one of the configurational variables, then the resulting dynamics is isomorphic to that one emerging in loop quantum cosmology for the μ¯ scheme, with the critical energy density value being fixed only by fundamental constants and the Immirzi parameter. Finally, we consider the polymer quantum dynamics of the homogeneous and inhomogeneous Mixmaster model by means of a metric approach. In particular, we compare the results obtained by using the volume variable, which leads to the emergence of a singularity- and chaos-free cosmology, to the use of the standard Misner variable. In the latter case, we deal with the surprising result of a cosmology that is still singular, and its chaotic properties depend on the ratio between the lattice steps for the isotropic and anisotropic variables. We conclude the review with some considerations of the problem of changing variables in the polymer representation of the minisuperspace dynamics. In particular, on a semiclassical level, we consider how the dynamics can be properly mapped in two different sets of variables (at the price of having to deal with a coordinate dependent lattice step), and we infer some possible implications on the equivalence of the μ0 and μ¯ scheme of loop quantum cosmology.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 435
Author(s):  
Yee Jack Ng

Quantum fluctuations endow spacetime with a foamy texture. The degree of foaminess is dictated by black hole physics to be of the holographic type. Applied to cosmology, the holographic foam model predicts the existence of dark energy with critical energy density in the current (late) universe, the quanta of which obey infinite statistics. Furthermore, we use the deep similarities between turbulence and the spacetime foam phase of strong quantum gravity to argue that the early universe was in a turbulent regime when it underwent a brief cosmic inflation with a “graceful” transition to a laminar regime. In this scenario, both the late and the early cosmic accelerations have their origins in spacetime foam.


2020 ◽  
Vol 102 (2) ◽  
Author(s):  
Z. Borjan ◽  
O. A. Vasilyev ◽  
P. J. Upton ◽  
S. Dietrich

Author(s):  
Mate Csanad ◽  
Tamas Csorgo ◽  
Ze-Fang Jiang ◽  
Chun-Bin Yang

Accelerating, exact, explicit and simple solutions of relativistic hydrodynamics allow for a simple and natural description of highly relativistic p+p collisions. These solutions yield a finite rapidity distribution, thus they lead to an advanced estimate of the initial energy density of high energy collisions. We show that such an advanced estimate yields an initial energy density in $\sqrt{s}=7$ and 8 TeV p+p collisions at LHC around or above the critical energy density from lattice QCD, and a corresponding initial temperature above the critical temperature from QCD and the Hagedorn temperature. This suggests that the collision energy of the LHC corresponds to a large enough initial energy density to create a non-hadronic perfect fluid even in pp collisions. %We also show, that several times the %critical energy density may have been reached in high multiplicity events, hinting at a non-hadronic medium created in %high multiplicity $\sqrt{s}=7$ and 8 TeV p+p collisions.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Antonio Capolupo

It is shown that the vacuum condensate induced by many phenomena behaves as a perfect fluid which, under particular conditions, has zero or negative pressure. In particular, the condensates of thermal states of fields in curved space and of mixed particles have been analyzed. It is shown that the thermal states with the cosmic microwave radiation temperature and the Unruh and the Hawking radiations give negligible contributions to the critical energy density of the universe, while the thermal vacuum of the intercluster medium could contribute to the dark matter, together with the vacuum energy of fields in curved space-time and of mixed neutrinos. Moreover, a component of the dark energy can be represented by the vacuum of axion-like particles mixed with photons and superpartners of neutrinos. The formal analogy among the systems characterized by the condensates can open new scenarios in the possibility of detecting the dark components of the universe in table top experiments.


2014 ◽  
Vol 2014 (12) ◽  
pp. P12001 ◽  
Author(s):  
Rachele Nerattini ◽  
Andrea Trombettoni ◽  
Lapo Casetti

Sign in / Sign up

Export Citation Format

Share Document